Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 104(8): 085001, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366940

ABSTRACT

Thin, mass-limited targets composed of V/Cu/Al layers with diameters ranging from 50 to 300 microm have been isochorically heated by a 300 fs laser pulse delivering up to 10 J at 2x10{19} W/cm{2} irradiance. Detailed spectral analysis of the Cu x-ray emission indicates that the highest temperatures, of the order of 100 eV, have been reached when irradiating the smallest targets with a high-contrast, frequency-doubled pulse despite a reduced laser energy. Collisional particle-in-cell simulations confirm the detrimental influence of the preformed plasma on the bulk target heating.

2.
Rev Sci Instrum ; 79(10): 10E536, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044517

ABSTRACT

Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.


Subject(s)
Lasers , Protons , Argon/chemistry , Carbon/chemistry , Equipment Design , Ions , Light , Nitrogen/chemistry , Oxygen/chemistry , Scattering, Radiation , Temperature
3.
Rev Sci Instrum ; 79(10): 10F547, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044689

ABSTRACT

Here we present the first direct focal spot images and analysis of an ultrahigh intensity short-pulse laser focus (>5x10(19) W/cm(2)) on target. Such a focal spot characterization is typically done previous to the shot with a low-power alignment beam using equivalent plane imaging techniques. The resulting intensity of the shot is then inferred from these results. We report on the development of a backscatter focus diagnostic, which enables imaging of the on-target full-power focal spot.

4.
Phys Rev Lett ; 101(5): 055004, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764401

ABSTRACT

This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems.

5.
Rev Sci Instrum ; 79(7): 073301, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18681694

ABSTRACT

In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal.

SELECTION OF CITATIONS
SEARCH DETAIL