Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(3): 1096-1110, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37749698

ABSTRACT

Observed photon count rates must be corrected for detector dead time effects for accurate quantification, especially at high count rates. We present the "constant k-ratio" method, a new approach for calibrating dead time for wavelength dispersive spectrometers by measuring k-ratios as a function of beam current. The method is based on the observation that for a given emission line at a specific take-off angle and electron beam energy, the intensity ratio from two materials containing the element should remain constant as a function of beam current, if the dead time calibration is accurate. The method has the advantage that it does not rely on the linearity of the beam current picoammeter, yet also allows the analyst to evaluate the picoammeter linearity, another critical parameter in EPMA calibration. By simultaneously comparing k-ratios for all spectrometers, one can also ascertain k-ratio consensus, essential for inter-laboratory comparisons. We also introduce improved dead time expressions and provide best practices on how to perform these instrument calibrations using this new "constant k-ratio" method. These improvements enable quantitative analysis of major and minor elements with high accuracy at high beam currents, simultaneously with trace elements with high sensitivity, for point analyses and X-ray mapping.

2.
Microsc Microanal ; 29(4): 1436-1449, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37488832

ABSTRACT

It is often assumed that electron backscatter and continuum (bremsstrahlung) productions emitted from electron-solid interactions during X-ray microanalysis in compounds can be extrapolated from pure element observations by means of the assumption of average atomic number, or Z-bar (Z¯). For pure elements the average Z is equal to the atomic number, but this direct approach fails for compounds. The use of simple atomic fractions yields completely spurious results, and while the commonly used mass fraction Z averaging produces fairly reasonable results, we know from physical considerations that the mass of the neutron plays only a negligible role in such interactions below ∼1 MeV. Therefore, including the mass or atomic weight in such calculations can only introduce further errors in these models. We present an expression utilizing atomic fractions of the atomic numbers of the elements in the compound (Z fraction), with an exponent to account for the variation in nuclear screening as a function of the element Z value.

3.
Adv Mater ; 35(19): e2211603, 2023 May.
Article in English | MEDLINE | ID: mdl-36802104

ABSTRACT

The past decade has witnessed the development of layered-hydroxide-based self-supporting electrodes, but the low active mass ratio impedes its all-around energy-storage applications. Herein, the intrinsic limit of layered hydroxides is broken by engineering F-substituted ß-Ni(OH)2 (Ni-F-OH) plates with a sub-micrometer thickness (over 700 nm), producing a superhigh mass loading of 29.8 mg cm-2 on the carbon substrate. Theoretical calculation and X-ray absorption spectroscopy analysis demonstrate that Ni-F-OH shares the ß-Ni(OH)2 -like structure with slightly tuned lattice parameters. More interestingly, the synergy modulation of NH4 + and F- is found to serve as the key enabler to tailor these sub-micrometer-thickness 2D plates thanks to the modification effects on the (001) plane surface energy and local OH- concentration. Guided by this mechanism, the superstructures of bimetallic hydroxides and their derivatives are further developed, revealing they are a versatile family with great promise. The tailored ultrathick phosphide superstructure achieves a superhigh specific capacity of 7144 mC cm-2 and a superior rate capability (79% at 50 mA cm-2 ). This work highlights a multiscale understanding of how exceptional structure modulation happens in low-dimensional layered materials. The as-built unique methodology and mechanisms will boost the development of advanced materials to better meet future energy demands.

4.
Geochim Cosmochim Acta ; 271: 116-131, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32214433

ABSTRACT

We report the structure, chemical composition, O, Al-Mg, He, and Ne isotope systematics of an interplanetary dust particle, "Manchanito". These analyses indicate that Manchanito solidified as refractory glass (with oxidized Fe but reduced Ti) in a chondrule-like formation environment more than 3.2 Myr after CAIs, after which it was exposed to Q-like noble gases in the dissipating solar nebula. Manchanito's He and Ne isotopic composition and concentrations are similar to those measured in samples of comet Wild 2, from which we infer that Manchanito's parent body was a comet. We propose that after formation and exposure to Q-like gases, Manchanito was transported to the outer Solar System where it came into contact with organics and volatile ices on its cometary parent body. Manchanito provides additional evidence that cometary solids have been subjected to energetic processing and large-scale transport in a wide range of environments in the Solar System.

5.
Meteorit Planet Sci ; 50(5): 976-1004, 2015 May.
Article in English | MEDLINE | ID: mdl-31031558

ABSTRACT

Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 103. There was no detectable metamorphic, nebular or aqueous alteration. In previous work Ogliore et al. (2012) reported that Iris formed late, > 3 Myr after CAIs, assuming 26Al was homogenously distributed, and was rich in heavy oxygen. Iris may be similar to assemblages found only in interplanetary dust particles and Stardust cometary samples called Kool particles. Callie is chemically and isotopically very similar but not identical to Iris.

6.
Nat Commun ; 5: 5445, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25487365

ABSTRACT

Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 µm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

7.
Science ; 345(6198): 786-91, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25124433

ABSTRACT

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

8.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170294

ABSTRACT

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...