Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 28(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959778

ABSTRACT

Nitric oxide (NO) production in injured and intact brain regions was compared by EPR spectroscopy in a model of brain and spinal cord injury in Wistar rats. The precentral gyrus of the brain was injured, followed by the spinal cord at the level of the first lumbar vertebra. Seven days after brain injury, a reduction in NO content of 84% in injured brain regions and 66% in intact brain regions was found. The difference in NO production in injured and uninjured brain regions persisted 7 days after injury. The copper content in the brain remained unchanged one week after modeling of brain and spinal cord injury. The data obtained in the experiments help to explain the problems in the therapy of patients with combined brain injury.


Subject(s)
Brain Injuries , Spinal Cord Injuries , Humans , Rats , Animals , Rats, Wistar , Nitric Oxide , Spinal Cord , Brain
2.
Front Chem ; 9: 623860, 2021.
Article in English | MEDLINE | ID: mdl-33796504

ABSTRACT

A variety of physicochemical methods were used to examine the self-organization, physicochemical, UV absorption, and fluorescent properties of diluted aqueous solutions (calculated concentrations from 1·10-20 to 1·10-2 M) of the membrane voltage-dependent potassium channels blocker 4-aminopyridine (4-AP). Using the dynamic light scattering method, it was shown that 4-AP solutions at concentrations in the range of 1·10-20-1·10-6 M are dispersed systems in which domains and nanoassociates of hundreds of nm in size are formed upon dilution. An interrelation between the non-monotonic concentration dependencies of the size of the dispersed phase, the fluorescence intensity (λ ex 225 nm, λ em 340 nm), specific electrical conductivity, and pH has been established. This allows us to predict the bioeffects of the 4-AP systems at low concentrations. The impact of these diluted aqueous systems on the electrical characteristics of identified neurons of Helix lucorum snails was studied. Incubation of neurons in the 4-AP systems for which the formation of domains and nanoassociates had been established lead to a nonmonotonic decrease of the resting potential by 7-13%. An analysis of the obtained results and published data allows for a conclusion that a consistent change in the nature and parameters of the dispersed phase, as well as the pH of the medium, apparently determines the nonmonotonic nature of the effect of the 4-AP systems in a 1·10-20-1·10-6 M concentration range on the resting membrane potential of neurons. It was found that the pre-incubation of neurons in the 4-AP system with a concentration of 1·10-12 M led to a 17.0% synergistic decrease in the membrane potential after a subsequent treatment with 1·10-2 M 4-AP solution. This finding demonstrates a significant modifying effect of self-organized dispersed systems of 4-AP in low concentrations on the neurons' sensitivity to 4-AP.

3.
Int J Mol Sci ; 21(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197439

ABSTRACT

The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system.


Subject(s)
Behavior, Animal/drug effects , Fenclonine/pharmacology , Helix, Snails/metabolism , Memory/drug effects , Tryptophan Hydroxylase/antagonists & inhibitors , Animals , Tryptophan Hydroxylase/metabolism
4.
Front Pharmacol ; 9: 607, 2018.
Article in English | MEDLINE | ID: mdl-29946257

ABSTRACT

HIGHLIGHTS The injection of p-chlorophenylalanine, specific blocker of 5-HT synthesis 3 days before reminder with anisomycin administration prevented forgetting. It is known that the reminder cause reactivation of the long-term memory and it leads to reconsolidation of memory. We showed earlier that the disruption of the reconsolidation of contextual memory in terrestrial snail was caused by anisomycin, the inhibitor of protein syntheses (Gainutdinova et al., 2005; Balaban et al., 2014). In this paper we investigated the possible changes of the memory reconsolidation under the conditions of serotonin deficit, caused by administration of p-chlorophenylalanine, the inhibitor of tryptophan hydroxylase synthesis (intermediate stage of the synthesis of serotonin). It was shown that the forgetting process for contextual memory after reminder and inhibition of protein synthesis did not occur if the serotonin transmission in nervous system was impaired. This effect was significantly different from the direct action of anisomycin, which blocked the reconsolidation of contextual memory. We concluded that the serotonin system was included to the process of memory reconsolidation.

5.
Front Neurosci ; 11: 427, 2017.
Article in English | MEDLINE | ID: mdl-28790886

ABSTRACT

Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium ([Formula: see text]) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the [Formula: see text]-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial [Formula: see text]-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial [Formula: see text]-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.

6.
Front Cell Neurosci ; 11: 403, 2017.
Article in English | MEDLINE | ID: mdl-29311833

ABSTRACT

Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.

7.
Front Behav Neurosci ; 9: 279, 2015.
Article in English | MEDLINE | ID: mdl-26557063

ABSTRACT

Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3.

8.
Eur J Neurosci ; 40(6): 2963-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24910164

ABSTRACT

Nitric oxide (NO) is known to be involved in associative memory formation. We investigated the influence of blocking NO function on the reconsolidation of context memory in terrestrial snails (Helix lucorum L.). After a 10 day session of electric shocks in one context only, context memory in snails was observed in test sessions as the significant difference of amplitudes of withdrawal responses to tactile stimuli in two different contexts. After a 1 day rest, a session of 'reminding' was performed, preceded by injection in different groups of the snails with either vehicle or combination of the protein synthesis blocker anisomycin (ANI) with one of the following drugs: the NO scavenger carboxy-PTIO, the NO-synthase inhibitors N-omega-nitro-L-arginin, nitroindazole and NG-nitro-L-arginine methyl ester hydrochloride, or the NO donor S-nitroso-N-acetyl-DL-penicillamine. Testing the context memory at different time intervals after the reminder under ANI injection showed that the context memory was impaired at 24 h and later, whereas the reminder under combined injection of ANI and each of the NO-synthase inhibitors used or the NO scavenger showed no impairment of long-term context memory. Injection of the NO donor S-nitroso-N-acetyl-DL-penicillamine with or without reminder had no effect on context memory. The results obtained demonstrated that NO is necessary for labilization of a consolidated context memory.


Subject(s)
Helix, Snails/physiology , Memory/physiology , Nitric Oxide/metabolism , Animals , Anisomycin/pharmacology , Benzoates/pharmacology , Electroshock , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , Helix, Snails/drug effects , Imidazoles/pharmacology , Indazoles/pharmacology , Memory/drug effects , Motor Activity/drug effects , Motor Activity/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Nitroarginine/pharmacology , Protein Synthesis Inhibitors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Time Factors
9.
Pharmacol Biochem Behav ; 94(1): 37-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19602423

ABSTRACT

The effects of antibodies to calcium-binding S100B protein diluted to 10(-12) (LAS100B) on the long-term sensitization in the Helix lucorum snail (neurobiological model of the anxious-depressive state) were evaluated. The administration of LAS100B prior to conditioning of long-term sensitization in the terrestrial snail 10 min prior to the first electric stimulus) prevents strengthening of the defensive reaction of withdrawing the ommatophores (eye tentacles) and the defensive reaction of closing the pneumostome. This effect is termed "protective", as it prevents the conditioning of long-term sensitization. At the same time, snails given an injection of saline developed long-term sensitization with a significant strengthening of the defensive reactions of withdrawing the ommatophores and closing the pneumostome. When LAS100B was administered before long-term sensitization in advance, the membrane and threshold potentials of premotor interneurons, which regulate defensive behaviour, decreased to a significantly lesser extent compared to the long-term sensitization arm. It is possible that the "protective" effect is linked to the mechanisms of maintaining the membrane potential and changes in extra- and intracellular balance of calcium-binding S100B protein.


Subject(s)
Antibodies/administration & dosage , Behavior, Animal , Conditioning, Classical , Helix, Snails/physiology , Nerve Growth Factors/physiology , Reflex , S100 Proteins/physiology , Action Potentials , Analysis of Variance , Animals , Electric Stimulation , Interneurons/physiology , Locomotion , Membrane Potentials , Nerve Growth Factors/immunology , S100 Calcium Binding Protein beta Subunit , S100 Proteins/immunology , Sensory Thresholds , Touch/physiology
10.
Learn Mem ; 12(6): 620-5, 2005.
Article in English | MEDLINE | ID: mdl-16322364

ABSTRACT

We investigated the influence of the protein synthesis blocker anisomycin on contextual memory in the terrestrial snail Helix. Prior to the training session, the behavioral responses in two contexts were similar. Two days after a session of electric shocks (5 d) in one context only, the context conditioning was observed as the significant difference of behavioral response amplitudes in two contexts. On the day following testing of context learning, a session of "reminding" was performed, immediately after which the snails were injected with anisomycin or vehicle. Testing of long-term context memory has shown that only anisomycin injections impaired the context conditioning. In control series, the snails were injected after the training session with anisomycin/saline without reminding, and no impairment of the long-term context memory was observed, while injection of anisomycin during the training session completely abolished the long-term memory. No effects of anisomycin on the short-term memory were observed. Surprisingly, injection of anisomycin after the reminding combined with reinforcing stimuli elicited no effect on the context memory. Differences between single-trial and multisession learning are discussed.


Subject(s)
Association Learning/physiology , Avoidance Learning/physiology , Helix, Snails/metabolism , Memory/physiology , Protein Biosynthesis/physiology , Animals , Anisomycin/pharmacology , Association Learning/drug effects , Avoidance Learning/drug effects , Environment , Helix, Snails/drug effects , Memory/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...