Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Total Environ ; 946: 174394, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38955276

ABSTRACT

Several steps in the abattoir can influence the presence of microbes and associated resistance genes (ARGs) on the animal carcasses used for further meat processing. We investigated how these processes influence the resistome-microbiome of groups of pigs with different on-farm antimicrobial exposure status, from the moment they entered the abattoir until the end of carcass processing. Using a targeted enrichment metagenomic approach, we identified 672 unique ARGs conferring resistance to 43 distinct AMR classes from pooled skin (N = 42) and carcass swabs (N = 63) collected sequentially before, during, and after the slaughter process and food safety interventions. We observed significant variations in the resistome and microbial profiles of pigs before and after slaughter, as well as a significant decline in ARG counts, diversity, and microbial DNA load during slaughter and carcass processing, irrespective of prior antimicrobial treatments on the farm. These results suggest that existing interventions in the abattoir are effective in reducing not only the pathogen load but also the overall bacterial burden, including ARGs on pork carcasses. Concomitant with reductions in microbial and ARG counts, we observed an increase in the relative abundance of non-drug-specific ARGs, such as those conferring resistance to metals and biocides, and in particular mercury. Using a strict colocalization procedure, we found that most mercury ARGs were associated with genomes from the Pseudomonadaceae and Enterobacteriaceae families. Collectively, these findings demonstrate that slaughter and processing practices within the abattoir can shape the microbial and ARG profiles of pork carcasses during the transition from living muscle to meat.


Subject(s)
Abattoirs , Microbiota , Animals , Swine , Microbiota/drug effects , Microbiota/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/drug effects
2.
Anim Microbiome ; 6(1): 7, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383422

ABSTRACT

BACKGROUND: Age-associated changes in the gastrointestinal microbiome of young pigs have been robustly described; however, the temporal dynamics of the fecal microbiome of the female pig from early life to first parity are not well understood. Our objective was to describe microbiome and antimicrobial resistance dynamics of the fecal microbiome of breeding sows from early life through estrus, parturition and weaning of the first litter of piglets (i.e., from 3 to 53 weeks of age). RESULTS: Our analysis revealed that fecal bacterial populations in developing gilts undergo changes consistent with major maturation milestones. As the pigs progressed towards first estrus, the fecal bacteriome shifted from Rikenellaceae RC9 gut group- and UCG-002-dominated enterotypes to Treponema- and Clostridium sensu stricto 1-dominated enterotypes. After first estrus, the fecal bacteriome stabilized, with minimal changes in enterotype transition and associated microbial diversity from estrus to parturition and subsequent weaning of first litter piglets. Unlike bacterial communities, fecal fungal communities exhibited low diversity with high inter- and intra-pig variability and an increased relative abundance of certain taxa at parturition, including Candida spp. Counts of resistant fecal bacteria also fluctuated over time, and were highest in early life and subsequently abated as the pigs progressed to adulthood. CONCLUSIONS: This study provides insights into how the fecal microbial community and antimicrobial resistance in female pigs change from three weeks of age throughout their first breeding lifetime. The fecal bacteriome enterotypes and diversity are found to be age-driven and established by the time of first estrus, with minimal changes observed during subsequent physiological stages, such as parturition and lactation, when compared to the earlier age-related shifts. The use of pigs as a model for humans is well-established, however, further studies are needed to understand how our results compare to the human microbiome dynamics. Our findings suggest that the fecal microbiome exhibited consistent changes across individual pigs and became more diverse with age, which is a beneficial characteristic for an animal model system.

3.
Anim Microbiome ; 5(1): 61, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041127

ABSTRACT

BACKGROUND: Beef cattle experience several management challenges across their lifecycle. Castration and weaning, two major interventions in the early life of beef cattle, can have a substantial impact on animal performance. Despite the key role of the rumen microbiome on productive traits of beef cattle, the effect of castration timing and weaning strategy on this microbial community has not been formally described. We assessed the effect of four castration time windows (at birth, turnout, pre-weaning and weaning) and two weaning strategies (fence-line and truck transportation) on the rumen microbiome in a randomized controlled study with 32 male calves across 3 collection days (i.e., time points). Ruminal fluid samples were submitted to shotgun metagenomic sequencing and changes in the taxonomic (microbiota) and functional profile (metagenome) of the rumen microbiome were described. RESULTS: Using a comprehensive yet stringent taxonomic classification approach, we identified 10,238 unique taxa classified under 40 bacterial and 7 archaeal phyla across all samples. Castration timing had a limited long-term impact on the rumen microbiota and was not associated with changes in alpha and beta diversity. The interaction of collection day and weaning strategy was associated with changes in the rumen microbiota, which experienced a significant decrease in alpha diversity and shifts in beta diversity within 48 h post-weaning, especially in calves abruptly weaned by truck transportation. Calves weaned using a fence-line weaning strategy had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and Ruminococcus genera compared to calves weaned by truck transportation. Some genes involved in the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had higher relative abundance in fence-line-weaned calves post-weaning. The antimicrobial resistance gene tetW consistently represented more than 50% of the resistome across time, weaning and castration groups, without significant changes in relative abundance. CONCLUSIONS: Within the context of this study, castration timing had limited long-term effects on the rumen microbiota, while weaning strategy had short-term effects on the rumen microbiota and methane-associated metagenome, but not on the rumen resistome.

4.
PLoS One ; 18(8): e0289165, 2023.
Article in English | MEDLINE | ID: mdl-37561770

ABSTRACT

Hyperketonemia (HYK) in early lactation can have a different impact on health and productivity depending on the timing of HYK onset. While specific metabolites measured during the dry period may serve as biomarkers of HYK, the correlations between metabolites represent a challenge for the use of metabolic profiles dataset, and little has been explored on HYK. This exploratory cohort study aimed a) to characterize the correlations among metabolites measured during the late dry period in dairy cows, and b) to identify biomarkers in the late dry period associated with the onset of HYK at the first (wk1) and second (wk2) week of lactation. Individual blood samples from 440 Holstein dairy cows were collected at 21 ± 3 days before expected parturition. From each sample, 36 different metabolites were measured in serum and plasma. Hyperketonemia was diagnosed in wk1 and wk2 of lactation based on the blood concentration of beta-hydroxybutyrate (BHB > 1.2 mmol/L). Principal component analysis (PCA) was performed to reduce metabolites to a smaller number of uncorrelated components. Multivariable logistic regression models were applied to assess the associations between principal components (PC) and HYK at wk1 only (HYK+ wk1), wk2 only (HYK+ wk2), or both weeks (HYK+ wk1-2). The incidence of HYK was 16.2% in the first week, 13.0% in the second week, and 21.2% within the first two weeks of lactation. The results of PCA highlighted 10 PCs from which two were associated with HYK+ wk1 as compared with cows without HYK during the first two weeks of lactation (non-HYK); the PC a2 led by bilirubin and non-esterified fatty acids (OR = 1.29; 95%CI: 1.02-1.68), and the PC a5 led by alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) (OR = 2.77; 95%CI: 1.61-4.97). There was no evidence of an association between any PC and HYK+ wk2 (vs. non-HYK cows). Cows with elevated PC a5 (led by ALP and GGT) in the dry period were 3.18 times more likely to be HYK+ wk1 than HYK+ wk2 (OR: 3.18, 95%CI: 1.34-8.73; P = 0.013). Overall, the main hypothesis generated by our exploratory study suggests that cows with biomarkers of liver dysfunction (ALP, GGT, bilirubin) assessed by PCA at 3 weeks before calving are more likely to develop HYK during the first week of lactation compared to the second week. In addition, results suggest that cows with HYK in both of the first two weeks of lactation had an overall metabolic disbalance during the onset of the late dry period, which based on PCs, encompass biomarkers related to glucogenic and ketogenic metabolic pathways as well as liver dysfunction and fatty liver. Further research is needed to determine the underlying mechanisms associated with the different adaptations between cows that develop HYK during the first and second week of lactation.


Subject(s)
Cattle Diseases , Ketosis , Female , Cattle , Animals , Milk/metabolism , Cohort Studies , Cattle Diseases/diagnosis , Lactation , Ketosis/veterinary , Ketosis/diagnosis , 3-Hydroxybutyric Acid/metabolism , Metabolome
5.
Anim Microbiome ; 5(1): 2, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36624546

ABSTRACT

BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.

6.
Microbiome ; 10(1): 118, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35922873

ABSTRACT

BACKGROUND: Antimicrobials are used in food-producing animals for purposes of preventing, controlling, and/or treating infections. In swine, a major driver of antimicrobial use is porcine reproductive and respiratory syndrome (PRRS), which is caused by a virus that predisposes infected animals to secondary bacterial infections. Numerous antimicrobial protocols are used to treat PRRS, but we have little insight into how these treatment schemes impact antimicrobial resistance (AMR) dynamics within the fecal microbiome of commercial swine. The aim of this study was to determine whether different PRRS-relevant antimicrobial treatment protocols were associated with differences in the fecal microbiome and resistome of growing pigs. To accomplish this, we used a metagenomics approach to characterize and compare the longitudinal wean-to-market resistome and microbiome of pigs challenged with PRRS virus and then exposed to different antimicrobial treatments, and a group of control pigs not challenged with PRRS virus and having minimal antimicrobial exposure. Genomic DNA was extracted from pen-level composite fecal samples from each treatment group and subjected to metagenomic sequencing and microbiome-resistome bioinformatic and statistical analysis. Microbiome-resistome profiles were compared over time and between treatment groups. RESULTS: Fecal microbiome and resistome compositions both changed significantly over time, with a dramatic and stereotypic shift between weaning and 9 days post-weaning (dpw). Antimicrobial resistance gene (ARG) richness and diversity were significantly higher at earlier time points, while microbiome richness and diversity were significantly lower. The post-weaning shift was characterized by transition from a Bacteroides-dominated enterotype to Lactobacillus- and Streptococcus-dominated enterotypes. Both the microbiome and resistome stabilized by 44 dpw, at which point the trajectory of microbiome-resistome maturation began to diverge slightly between the treatment groups, potentially due to physical clustering of the pigs. Challenge with PRRS virus seemed to correspond to the re-appearance of many very rare and low-abundance ARGs within the feces of challenged pigs. Despite very different antimicrobial exposures after challenge with PRRS virus, resistome composition remained largely similar between the treatment groups. Differences in ARG abundance between the groups were mostly driven by temporal changes in abundance that occurred prior to antimicrobial exposures, with the exception of ermG, which increased in the feces of treated pigs, and was significantly more abundant in the feces of these pigs compared to the pigs that did not receive post-PRRS antimicrobials. CONCLUSIONS: The fecal microbiome-resistome of growing pigs exhibited a stereotypic trajectory driven largely by weaning and physiologic aging of the pigs. Events such as viral illness, antimicrobial exposures, and physical grouping of the pigs exerted significant yet relatively minor influence over this trajectory. Therefore, the AMR profile of market-age pigs is the culmination of the life history of the individual pigs and the populations to which they belong. Disease status alone may be a significant driver of AMR in market-age pigs, and understanding the interaction between disease processes and antimicrobial exposures on the swine microbiome-resistome is crucial to developing effective, robust, and reproducible interventions to control AMR. Video Abstract.


Subject(s)
Anti-Infective Agents , Coinfection , Microbiota , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Metagenomics , Microbiota/genetics , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine respiratory and reproductive syndrome virus/genetics , Swine
7.
J Anim Sci ; 100(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35700748

ABSTRACT

Age and diet are among the factors that influence the community composition of the fecal microbiome. Additionally, antimicrobial use can alter the composition of bacterial communities. An 86-d study with finisher pigs aimed to evaluate age-related dynamics (day 98 to 177 of age), effects of types and levels of dietary fiber, and injectable antimicrobials on the fecal microbiome and antimicrobial resistance (AMR) was conducted. A total of 287 pigs, housed in 36 pens, with 7 to 8 pigs per pen, fed a corn grain and soybean meal-based basal diet, formulated to contain 8.7% neutral detergent fiber (NDF), were randomly assigned to one of three treatments: 1) basal diet with no supplement, 2) basal diet supplemented with 20% distillers dried grains with solubles (DDGS) formulated to contain 13.6% NDF, or 3) basal diet supplemented with 14.5% sugar beet pulp (SBP) formulated to contain 13.6% NDF. Five finisher pigs from each treatment group were selected randomly, and fecal samples were collected on days 98, 110, 144, and 177 of age. In addition, fecal samples were collected from pigs that were injected intramuscularly ceftiofur hydrochloride or penicillin G on days 1 and 3 along with pen-mate-untreated controls on day 1. Fecal samples were subjected to 16S rRNA amplicon-based microbiome analysis and culture methods to quantify the abundance of total AMR coliforms and enterococci populations. The alpha-diversity, such as species richness, increased with age, and the overall bacterial composition changed with age (P =0.001) and diet (P = 0.001). Diet-associated shifts in the specific bacterial taxa were observed. The richness, diversity, and evenness of bacterial taxa did not differ between pigs that were injected with ceftiofur vs. their untreated pen mates or by dietary treatments but differed in pigs that received penicillin G injection. Both antimicrobial treatments contributed to changes in the overall fecal bacterial composition at the genus level. Collectively, the data demonstrate that both age and the diet (control vs. DDGS-, control vs. SBP-, or DDGS- vs. SBP-based diets) were associated with the overall bacterial community composition, and the impact of age on variations in fecal microbiome composition was greater than the diet. Antibiotic treatment had minimal effect on bacterial diversity and relative abundance of taxa. Furthermore, diets and antimicrobial treatment had minimal impact on the overall counts of AMR coliforms and enterococci populations in feces.


Bacterial communities in the gut and the feces are strongly influenced by a number of factors, particularly the age of the animal and the diet. In addition, antibiotic administration routinely used to treat bacterial diseases can also affect the community composition. A study with finisher pigs was conducted to evaluate age-related changes, effects of types­distiller's dried grains with solubles (DGGS) or sugar beet pulp (SBP)­and levels of dietary fiber, and injectable antibiotics on the fecal bacterial composition and antibiotic resistance in fecal bacteria. Fecal samples were collected from five pigs in each of the three dietary treatment groups, control diet with no supplement or supplemented with DDGS or SBP, on days 98, 110, 144, and 177 of age and on days 1 and 3 after the first injection of antibiotics, ceftiofur or penicillin G. Samples were analyzed to identify the bacterial community composition and prevalence of antibiotic resistance in fecal bacteria. Data generated suggested that the overall bacterial composition changed with age and diet, and age appeared to have a greater impact than diet. Antibiotics had only a modest impact on the bacterial community and had minimum impact on antibiotic resistance of fecal bacteria.


Subject(s)
Animal Nutritional Physiological Phenomena , Microbiota , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Detergents , Dietary Fiber/analysis , Drug Resistance, Bacterial , Feces/chemistry , RNA, Ribosomal, 16S , Sugars , Swine , Zea mays
8.
Vet Med Sci ; 7(5): 1800-1806, 2021 09.
Article in English | MEDLINE | ID: mdl-33991410

ABSTRACT

The objective of this study was to determine the effects of dietary fibre level and source on faecal ceftiofur metabolites concentrations after intramuscular administration of therapeutic ceftiofur hydrochloride in finisher pigs. Pens of finisher pigs (n = 36), with an equal number of barrows and gilts, were randomly assigned to 1 of 3 dietary treatment groups: basal diet composed of corn grain and soy bean meal with no supplement and formulated to contain 8.7% neutral detergent fibre (NDF), supplemented with 20% distillers dried grains with solubles (a byproduct of the ethanol production from corn grain) formulated to contain 13.6% NDF, primarily insoluble fibre or supplemented with 14.5% sugar beet pulp formulated to contain 13.6% NDF. Faecal samples were collected 6-8 hr after ceftiofur injection from treated and untreated pen-mate pigs on days 1 and 3 of the 3-day treatment regimen. Faecal concentrations of ceftiofur metabolites, including the major metabolite, desfuroylceftiofur, were analysed by reverse-phase high pressure liquid chromatography with ultraviolet detection. Overall, the faecal concentrations of ceftiofur metabolites did not differ significantly between the dietary treatments. The mean concentrations of metabolites tended to be lower (p = .1) on day 3 compared to day 1 of the 3-day treatment regimen. Faecal concentrations of metabolites were not affected by the gender of the finisher pigs. The concentrations of ceftiofur metabolites in the faeces are likely reflective of the microbial activity in the hindgut. Our data suggest that the fibre level and source used in the study did not affect the faecal concentrations of ceftiofur metabolites.


Subject(s)
Animal Feed , Cephalosporins , Animal Feed/analysis , Animals , Feces/chemistry , Sus scrofa , Swine
9.
Front Vet Sci ; 7: 622495, 2020.
Article in English | MEDLINE | ID: mdl-33575279

ABSTRACT

Introduction: A phenomenon of decreasing antimicrobial resistance (AMR) among fecal bacteria as food animals age has been noted in multiple field studies. We conducted a scoping review to summarize the extent, range, and nature of research activity and the data for the following question: "does AMR among enteric/fecal bacteria predictably shift as animals get older?". Methods: This review followed a scoping review methodology framework. Pertinent literature published up until November 2018 for all animals (except humans) was retrieved using keyword searches in two online databases, namely, PubMed® and the Web of Science™ Core Collection, without filtering publication date, geographic location, or language. Data were extracted from the included studies, summarized, and plotted. Study quality was also assessed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) guidelines for all included papers. Results: The publications with detailed relevant data (n = 62) in food animals, poultry, and dogs were identified. These included longitudinal studies (n = 32), cross-sectional studies of different age groups within one food animal production system or small-animal catchment area (n = 16), and experimental or diet trials (n = 14). A decline in host-level prevalence and/or within-host abundance of AMR among fecal bacteria in production beef, dairy cattle, and swine was reported in nearly two-thirds (65%) of the identified studies in different geographic locations from the 1970's to 2018. Mixed results, with AMR abundance among fecal bacteria either increasing or decreasing with age, have been reported in poultry (broiler chicken, layer, and grow-out turkey) and dogs. Conclusions: Quantitative synthesis of the data suggests that the age-dependent AMR phenomenon in cattle and swine is observed irrespective of geographic location and specific production practices. It is unclear whether the phenomenon predates or is related to antimicrobial drug use. However, almost 50% of the identified studies predate recent changes in antimicrobial drug use policy and regulations in food animals in the United States and elsewhere.

SELECTION OF CITATIONS
SEARCH DETAIL
...