Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Article in English | MEDLINE | ID: mdl-36631668

ABSTRACT

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Subject(s)
Ecosystem , Soil , Humans , Parks, Recreational , Biodiversity , Plants
2.
Science ; 378(6622): 915-920, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36423285

ABSTRACT

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.


Subject(s)
Biodiversity , Herbivory , Livestock , Climate Change , Soil
3.
Proc Natl Acad Sci U S A ; 119(43): e2123393119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252001

ABSTRACT

The constant provision of plant productivity is integral to supporting the liability of ecosystems and human wellbeing in global drylands. Drylands are paradigmatic examples of systems prone to experiencing abrupt changes in their functioning. Indeed, space-for-time substitution approaches suggest that abrupt changes in plant productivity are widespread, but this evidence is less clear using observational time series or experimental data at a large scale. Studying the prevalence and, most importantly, the unknown drivers of abrupt (rather than gradual) dynamical patterns in drylands may help to unveil hotspots of current and future dynamical instabilities in drylands. Using a 20-y global satellite-derived temporal assessment of dryland Normalized Difference Vegetation Index (NDVI), we show that 50% of all dryland ecosystems exhibiting gains or losses of NDVI are characterized by abrupt positive/negative temporal dynamics. We further show that abrupt changes are more common among negative than positive NDVI trends and can be found in global regions suffering recent droughts, particularly around critical aridity thresholds. Positive abrupt dynamics are found most in ecosystems with low seasonal variability or high aridity. Our work unveils the high importance of climate variability on triggering abrupt shifts in vegetation and it provides missing evidence of increasing abruptness in systems intensively managed by humans, with low soil organic carbon contents, or around specific aridity thresholds. These results highlight that abrupt changes in dryland dynamics are very common, especially for productivity losses, pinpoint global hotspots of dryland vulnerability, and identify drivers that could be targeted for effective dryland management.


Subject(s)
Ecosystem , Soil , Carbon , Climate Change , Humans , Plants , Prevalence
4.
Science ; 367(6479): 787-790, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32054762

ABSTRACT

Aridity, which is increasing worldwide because of climate change, affects the structure and functioning of dryland ecosystems. Whether aridification leads to gradual (versus abrupt) and systemic (versus specific) ecosystem changes is largely unknown. We investigated how 20 structural and functional ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt changes in multiple ecosystem attributes. These changes occurred sequentially in three phases characterized by abrupt decays in plant productivity, soil fertility, and plant cover and richness at aridity values of 0.54, 0.7, and 0.8, respectively. More than 20% of the terrestrial surface will cross one or several of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts of aridification on essential ecosystem services for the more than 2 billion people living in drylands.


Subject(s)
Climate Change , Droughts , Soil
5.
Sci Rep ; 7: 45529, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349929

ABSTRACT

Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m-1 day-1. Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m-1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover.

6.
Nat Commun ; 7: 10541, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26817514

ABSTRACT

Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Soil Microbiology , Bacteria/classification , Climate , Ecosystem , Soil/chemistry
7.
Biol Lett ; 10(10): 20140673, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25339654

ABSTRACT

Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning.


Subject(s)
Biodiversity , Droughts , Ecosystem , Plants , Temperature , Argentina , Climate , Poaceae
SELECTION OF CITATIONS
SEARCH DETAIL
...