Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831418

ABSTRACT

Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.

2.
Brain ; 146(5): 1758-1774, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36408894

ABSTRACT

This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.


Subject(s)
Cell-Free Nucleic Acids , Neurology , Pregnancy , Female , Humans , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , Liquid Biopsy/methods , Mutation
3.
Cancers (Basel) ; 14(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35954407

ABSTRACT

Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.

4.
Polymers (Basel) ; 14(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890738

ABSTRACT

Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.

5.
Pharmaceuticals (Basel) ; 15(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35631452

ABSTRACT

The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.

6.
Expert Opin Pharmacother ; 22(15): 2019-2031, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34605345

ABSTRACT

Introduction: Treatments for brain cancer have radically evolved in the past decade due to a better understanding of the interplay between the immune system and tumors of the central nervous system (CNS). However, glioblastoma multiforme (GBM) remains the most common and lethal CNS malignancy affecting adults.Areas covered: The authors review the literature on glioblastoma pharmacologic therapies with a focus on trials of combination chemo-/immunotherapies and drug delivery platforms from 2015 to 2021.Expert opinion: Few therapeutic advances in GBM treatment have been made since the Food and Drug Administration (FDA) approval of the BCNU-eluting wafer, Gliadel, in 1996 and oral temozolomide (TMZ) in 2005. Recent advances in our understanding of GBM have promoted a wide assortment of new therapeutic approaches including combination therapy, immunotherapy, vaccines, and Car T-cell therapy along with developments in drug delivery. Given promising preclinical data, these novel pharmacotherapies for the treatment of GBM are currently being evaluated in various stages of clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/drug therapy , Central Nervous System , Glioblastoma/drug therapy , Humans , Prognosis , Temozolomide/therapeutic use , United States
7.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30971475

ABSTRACT

Saliva from the mosquito vector of flaviviruses is capable of changing the local immune environment, leading to an increase in flavivirus-susceptible cells at the infected bite site. In addition, an antibody response to specific salivary gland (SG) components changes the pathogenesis of flaviviruses in human populations. To investigate whether antigenic SG proteins are capable of enhancing infection with Zika virus (ZIKV), a reemerging flavivirus primarily transmitted by the Aedes aegypti mosquito, we screened for antigenic SG proteins using a yeast display library and demonstrate that a previously undescribed SG protein we term neutrophil stimulating factor 1 (NeSt1) activates primary mouse neutrophils ex vivo Passive immunization against NeSt1 decreases pro-interleukin-1ß and CXCL2 expression, prevents macrophages from infiltrating the bite site, protects susceptible IFNAR-/- IFNGR-/- (AG129) mice from early ZIKV replication, and ameliorates virus-induced pathogenesis. These findings indicate that NeSt1 stimulates neutrophils at the mosquito bite site to change the immune microenvironment, allowing a higher level of early viral replication and enhancing ZIKV pathogenesis.IMPORTANCE When a Zika virus-infected mosquito bites a person, mosquito saliva is injected into the skin along with the virus. Molecules in this saliva can make virus infection more severe by changing the immune system to make the skin a better place for the virus to replicate. We identified a molecule that activates immune cells, called neutrophils, to recruit other immune cells, called macrophages, that the virus can infect. We named this molecule neutrophil-stimulating factor 1 (NeSt1). When we used antibodies to block NeSt1 in mice and then allowed Zika virus-infected mosquitoes to feed on these mice, they survived much better than mice that do not have antibodies against NeSt1. These findings give us more information about how mosquito saliva enhances virus infection, and it is possible that a vaccine against NeSt1 might protect people against severe Zika virus infection.


Subject(s)
Aedes/virology , Neutrophils/metabolism , Neutrophils/virology , Zika Virus Infection/immunology , Zika Virus/immunology , Aedes/immunology , Animals , Arboviruses , Chemokine CCL2 , Chemokine CXCL2/metabolism , Disease Models, Animal , Female , Immunity , Interleukin-1/metabolism , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/virology , Protein Precursors/metabolism , RAW 264.7 Cells , Saliva/virology , Salivary Glands/virology , Virus Replication , Zika Virus/pathogenicity , Zika Virus Infection/virology
8.
iScience ; 13: 339-350, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30884311

ABSTRACT

The TAM receptor, Axl, has been implicated as a candidate entry receptor for Zika virus (ZIKV) infection but has been shown as inessential for virus infection in mice. To probe the role of Axl in murine ZIKV infection, we developed a mouse model lacking the Axl receptor and the interferon alpha/beta receptor (Ifnar-/-Axl-/-), conferring susceptibility to ZIKV. This model validated that Axl is not required for murine ZIKV infection and that mice lacking Axl are resistant to ZIKV pathogenesis. This resistance correlates to lower pro-interleukin-1ß production and less apoptosis in microglia of ZIKV-infected mice. This apoptosis occurs through both intrinsic (caspase 9) and extrinsic (caspase 8) manners, and is age dependent, as younger Axl-deficient mice are susceptible to ZIKV pathogenesis. These findings suggest that Axl plays an important role in pathogenesis in the brain during ZIKV infection and indicates a potential role for Axl inhibitors as therapeutics during viral infection.

9.
Nat Genet ; 49(9): 1319-1325, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28783162

ABSTRACT

In this study, we used insurance claims for over one-third of the entire US population to create a subset of 128,989 families (481,657 unique individuals). We then used these data to (i) estimate the heritability and familial environmental patterns of 149 diseases and (ii) infer the genetic and environmental correlations for disease pairs from a set of 29 complex diseases. The majority (52 of 65) of our study's heritability estimates matched earlier reports, and 84 of our estimates appear to have been obtained for the first time. We used correlation matrices to compute environmental and genetic disease classifications and corresponding reliability measures. Among unexpected observations, we found that migraine, typically classified as a disease of the central nervous system, appeared to be most genetically similar to irritable bowel syndrome and most environmentally similar to cystitis and urethritis, all of which are inflammatory diseases.


Subject(s)
Disease/genetics , Environment , Genetic Predisposition to Disease/genetics , Insurance Claim Reporting/statistics & numerical data , Cystitis/classification , Cystitis/genetics , Disease/classification , Female , Humans , Inflammation/classification , Inflammation/genetics , Inheritance Patterns/genetics , Irritable Bowel Syndrome/classification , Irritable Bowel Syndrome/genetics , Linear Models , Male , Migraine Disorders/classification , Migraine Disorders/genetics , Multivariate Analysis , Pedigree , Risk Factors , United States , Urethritis/classification , Urethritis/genetics
10.
Cell Rep ; 19(3): 558-568, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423319

ABSTRACT

Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl-/-, Mertk-/-, Axl-/-Mertk-/-, and Axl-/-Tyro3-/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection.


Subject(s)
Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zika Virus Infection/metabolism , Zika Virus/physiology , Animals , Animals, Newborn , Female , Fetus/virology , Injections, Intraperitoneal , Mice , Placenta/virology , Pregnancy , Tropism , Vagina/virology , Virus Replication , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...