Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240172

ABSTRACT

Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production.


Subject(s)
Yarrowia , Fatty Acid Desaturases/metabolism , Linolenic Acids/metabolism , Plant Oils/metabolism , Fatty Acids/metabolism
2.
J Fungi (Basel) ; 9(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675935

ABSTRACT

One of the most interesting groups of fatty acid derivates is the group of conjugated fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures of some insect species, including tobacco horn-worm (Manduca sexta), are typical for the production of uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed to C18 long CLA and CLNA. In this study, M. sexta desaturases MsexD2 and MsexD3 were expressed in multiple strains of Y. lipolytica with different genotypes. Experiments with the supplementation of fatty acid methyl esters into the medium resulted in the production of novel fatty acids. Using GCxGC-MS, 20 new fatty acids with two or three double bonds were identified. Fatty acids with conjugated or isolated double bonds, or a combination of both, were produced in trace amounts. The results of this study prove that Y. lipolytica is capable of synthesizing C16-conjugated fatty acids. Further genetic optimization of the Y. lipolytica genome and optimization of the fermentation process could lead to increased production of novel fatty acid derivatives with biotechnologically interesting properties.

3.
Microbiologyopen ; 11(6): e1334, 2022 12.
Article in English | MEDLINE | ID: mdl-36479627

ABSTRACT

Dysregulation of lipid metabolism is associated with obesity and metabolic diseases but there is also increasing evidence of a relationship between lipid body excess and cancer. Lipid body synthesis requires diacylglycerol acyltransferases (DGATs) which catalyze the last step of triacylglycerol synthesis from diacylglycerol and acyl-coenzyme A. The DGATs and in particular DGAT2, are therefore considered potential therapeutic targets for the control of these pathologies. Here, the murine and the human DGAT2 were overexpressed in the oleaginous yeast Yarrowia lipolytica deleted for all DGAT activities, to evaluate the functionality of the enzymes in this heterologous host and DGAT activity inhibitors. This work provides evidence that mammalian DGATs expressed in Y. lipolytica are a useful tool for screening chemical libraries to identify potential inhibitors or activators of these enzymes of therapeutic interest.


Subject(s)
Diacylglycerol O-Acyltransferase , Enzyme Inhibitors , Animals , Humans , Mice , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Yarrowia , Enzyme Inhibitors/pharmacology
4.
Gen Physiol Biophys ; 41(6): 523-533, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36454113

ABSTRACT

Events associated with the progression of Parkinson´s disease (PD) are closely related to biomembrane dysfunction. The specific role of membrane composition in the conformational stability of alpha synuclein (αS) has already been well documented. Administration of rotenone is one of the best strategies to initiate PD phenotype in animal models. In the present study, daily exposure (14 weeks) of orally administered rotenone (10 mg/kg) was employed in a mouse model. The mitochondrial complex I inhibition resulted in elevated level of αS in whole tissue homogenate of mouse jejunum. In addition, we identified a strong intra-individual correlation between αS level and the specific esterified fatty acids. The observed correlation depends mainly on the acyl chain length. Based on the obtained results, it is suggested that there is a high potential to manipulate fatty acid homeostasis in modulating αS based pathogenesis of PD, at least in experimental conditions.


Subject(s)
Parkinson Disease , alpha-Synuclein , Mice , Animals , Rotenone , Jejunum , Fatty Acids , Disease Models, Animal
5.
Microb Cell Fact ; 21(1): 138, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35818073

ABSTRACT

BACKGROUND: Very long chain fatty acids (VLCFA) and their derivatives are industrially attractive compounds. The most important are behenic acid (C22:0) and erucic acid (C22:1Δ13), which are used as lubricants, and moisturizers. C22:0 and C22:1Δ13 have also potential for biofuel production. These fatty acids are conventionally obtained from plant oils. Yarrowia lipolytica is an oleaginous yeast with a long history of gene manipulations resulting in the production of industrially interesting compounds, such as organic acids, proteins, and various lipophilic molecules. It has been shown previously that it has potential for the production of VLCFA enriched single cell oils. RESULTS: The metabolism of Y. lipolytica was redesigned to achieve increased production of VLCFA. The effect of native diacylglycerol acyltransferases of this yeast YlLro1p, YlDga1p, and YlDga2p on the accumulation of VLCFA was examined. It was found that YlDga1p is the only enzyme with a beneficial effect. Further improvement of accumulation was achieved by overexpression of 3-ketoacyl-CoA synthase (TaFAE1) under 8UAS-pTEF promoter and blockage fatty acid degradation pathway by deletion of YlMFE1. The best-producing strain YL53 (Δmfe, pTEF-YlDGA1, 8UAS-pTEF-TaFAE1) produced 120 µg of very long chain fatty acids per g of produced biomass, which accounted for 34% of total fatty acids in biomass. CONCLUSIONS: Recombinant strains of Y. lipolytica have proved to be good producers of VLCFA. Redesign of lipid metabolism pathways had a positive effect on the accumulation of C22:1Δ13 and C22:0, which are technologically attractive compounds.


Subject(s)
Yarrowia , Biofuels , Biomass , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Yarrowia/metabolism
6.
Phytochemistry ; 179: 112510, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33002658

ABSTRACT

The specialization of parasitic plants from the Orobanchaceae family to the heterotrophic lifestyle caused several morphological, physiological and molecular changes. One of the adaptations to the parasitic lifestyle is the production of a large number of the smallest seeds in world flora, also called "dust-seeds". Seeds of 34 holoparasitic species from the Cistanche, Orobanche, Phelipanche, and Phelypaea genera were collected in the Caucasus region (54 samples) and their fatty acid content and compositions analysed. Of these seeds, 28 were investigated for the first time, and 12 are endemic to the Caucasus (one of the most important biodiversity hotspots in the world). The influence of different hosts, populations, habitats, and climatic conditions on the fatty acid content and composition, as well as some connections of taxonomic classification are discussed. The fatty acid content in the species varied between 0.9 and 42.5%, and showed quantitative differences at generic and infrageneric levels, while displaying uniform fatty acid composition. Thirteen fatty acids were identified, of which nine were undescribed for Orobanchaceae. The fatty acid composition of the Orobanchaceae seeds represented a mixture of saturated fatty acids (SFAs) (average 7.8%) and unsaturated fatty acids (UFAs) (average 92.2%). The fatty acid content in the Orobanchaceae seeds was directly unrelated to taxonomy, while the n-6/n-3 fatty acid ratio supported the clear separation of the Orobanche and Phelipanche genera. Orobanchaceae seeds contained mainly linoleic and oleic acids, thus they could be a potential nutritional source of the unsaturated fatty acids. Additionally, the studies confirmed the hypothesis that the degree of seed oil fatty acid unsaturation increased in colder climatic conditions, especially for the Orobanche genus.


Subject(s)
Orobanchaceae , Orobanche , Fatty Acids/analysis , Nutritive Value , Plant Oils , Seeds/chemistry
7.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Article in English | MEDLINE | ID: mdl-32129852

ABSTRACT

Erucic acid (C22:1Δ13) has several industrial applications including its use as a lubricant, surfactant and biodiesel and composite material constituent. It is produced by plants belonging to the Brassicaceae family, especially by the high erucic acid rapeseed. The ability to convert oleic acid into erucic acid is facilitated by FAE1. In this study, FAD2 (encoding Δ12-desaturase) was deleted in the strain Po1d to increase oleic acid content. Subsequently, FAE1 from Thlaspi arvense was overexpressed in Yarrowia lipolytica with the Δfad2 genotype. This resulted in the YL10 strain producing very long chain fatty acids, especially erucic acid. The YL10 strain was cultivated in media containing crude glycerol and waste cooking oil as carbon substrates. The cells grown using glycerol produced microbial oil devoid of linoleic acid, which was enriched with very long chain fatty acids, mainly erucic acid (9% of the total fatty acids). When cells were grown using waste cooking oil, the highest yield of erucic acid was obtained (887 mg L-1). However, external linoleic and α-linolenic were accumulated in cellular lipids when yeasts were grown in an oil medium. This study describes the possibility of conversion of waste material into erucic acid by a recombinant yeast strain.


Subject(s)
Fatty Acids/biosynthesis , Oils/metabolism , Organisms, Genetically Modified/metabolism , Waste Disposal, Fluid/methods , Yarrowia/metabolism , Erucic Acids/metabolism , Fatty Acid Desaturases/genetics , Genes, Plant/genetics , Organisms, Genetically Modified/genetics , Thlaspi/genetics , Yarrowia/genetics
8.
Biol Futur ; 71(1-2): 31-38, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34554525

ABSTRACT

This paper reviews the scientific literature published on synanthropic spiders in three Carpathian Basin countries-Hungary, Slovakia and Romania. A total number of 204 spider species have been reported from human constructions. Most of the 204 spider species (165 species) found in buildings were only occasional visitors, so-called asynanthropic species with typically low abundance. On average, eusynanthropic (23 species) and hemisynanthropic (16 species) species accounted for 80% of the specimen number. We have discovered that the number of hemisynanthropic faunal elements have remained unchanged in the past three decades. At the same time 14 new eusynanthropic species have been observed in the region, roughly one new species in every 2 years. Some of them have been introduced from the tropics, but some species originates from southern Europe, which may be related to climate change. This hypothesis was also confirmed by the seasonal summer outdoor appearance of these eusynanthropic species. True tropical spiders could only be settled permanently in greenhouses with special climate (such as botanical gardens). We still do not have data of any synanthropic species posing a health risk in this region.


Subject(s)
Animal Distribution , Biodiversity , Spiders/classification , Spiders/physiology , Animals , Conservation of Natural Resources , Europe, Eastern , Humans , Introduced Species , Population Density , Species Specificity , Time Factors
9.
Front Bioeng Biotechnol ; 8: 593419, 2020.
Article in English | MEDLINE | ID: mdl-33490049

ABSTRACT

Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.

10.
Yeast ; 37(1): 141-147, 2020 01.
Article in English | MEDLINE | ID: mdl-31509617

ABSTRACT

The 3-acetyl-1,2-diacylglycerols (acTAGs) are the molecules that are structurally similar to triacylglycerols (TAGs). They are naturally produced by plants of the family Celastraceae and animals such as Cervus nippon and Eurosta solidaginis. The presence of acetate in the sn-3 position of the glycerol backbone confers advantages to these compounds, for example, lower viscosity and calorific value compared to classical TAGs. In this work, the gene EeDAcT, which encodes diacylglycerol acetyltransferase in a species of bush (Euonymus europaeus), was overexpressed in strains Po1d (capable of accumulating storage lipids) and JMY1877 (incapable of accumulating storage lipids) of Yarrowia lipolytica, to test the activity of the gene EeDAcT and the production of acTAGs in oleaginous and nonoleaginous genetic backgrounds. It was observed that both the strains containing the gene EeDAcT (YL33 and YL35 for Po1d and JMY1877 strains, respectively) produced acTAGs. The strain YL33 accumulated up to 20% intracellular lipids, 20% of which was acTAGs, and 40% was TAGs. On the other hand, the strain YL35, which showed interrupted TAGs accumulation, produced up to 10% acTAGs as the only storage lipid. Unfortunately, the quantity of acTAGs produced in YL35 was insignificant, as the overall lipid accumulated in the strain was not more than 4% of the biomass. The fatty acid profile of acTAGs produced by the YL33 strain was remarkably similar to TAGs, and both of these structures were rich in oleic (45%) and palmitic (25%) acids.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Diglycerides/biosynthesis , Euonymus/enzymology , Yarrowia/metabolism , Biomass , Lipid Metabolism , Microorganisms, Genetically-Modified , Oleic Acid/analysis , Palmitic Acid/analysis , Plant Proteins/genetics , Triglycerides/biosynthesis , Yarrowia/genetics
11.
Eng Life Sci ; 17(3): 325-332, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624778

ABSTRACT

Oleaginous yeasts are considered as natural single cell oil producers. Engineering the lipid biosynthetic pathway has the potential to increase lipid accumulation by these yeasts. In Yarrowia lipolytica, three diacylglycerol acyltransferases encoded by LRO1, DGA1, and DGA2 genes are involved in lipid formation. Strain JMY3580 was constructed by overexpressing DGA2 gene in Q4 strain (dga1Δ dga2Δ lro1Δ are1Δ). Reconstruction of triacylglycerol synthesis pathway led to significant improvement in lipid accumulation. Strain JMY3580 accumulated over 40% of lipids in biomass, while lipid accumulation in wild-type strain was not able to exceed 20% when grown on a glycerol-based medium with carbon to nitrogen ratio of 90. Higher lipid accumulation (over 50%) was achieved in fed-batch grown cells when glycerol was added during cultivation. The best biomass yield was 18.5 g/L after 144 h with total fatty acid yield 9.9 g/L. Fatty acid composition was altered when Dga2p was the only diacylglycerol acyltransferase present in yeast cells, especially lower percentage of linoleic acid was present in lipids of JMY3580. Microbial oil prepared by conversion of glycerol by genetically engineered Y. lipolytica could be applied for various value-added products based on single cell oils.

12.
FEMS Yeast Res ; 16(6)2016 09.
Article in English | MEDLINE | ID: mdl-27506614

ABSTRACT

In the oleaginous yeast Yarrowia lipolytica, the diacylglycerol acyltransferases (DGATs) are major factors for triacylglycerol (TAG) synthesis. The Q4 strain, in which the four acyltransferases have been deleted, is unable to accumulate lipids and to form lipid bodies (LBs). However, the expression of a single acyltransferase in this strain restores TAG accumulation and LB formation. Using this system, it becomes possible to characterize the activity and specificity of an individual DGAT. Here, we examined the effects of DGAT overexpression on lipid accumulation and LB formation in Y. lipolytica Specifically, we evaluated the consequences of introducing one or two copies of the Y. lipolytica DGAT genes YlDGA1 and YlDGA2 Overall, multi-copy DGAT overexpression increased the lipid content of yeast cells. However, the size and distribution of LBs depended on the specific DGAT overexpressed. YlDGA2 overexpression caused the formation of large LBs, while YlDGA1 overexpression generated smaller but more numerous LBs. This phenotype was accentuated through the addition of a second copy of the overexpressed gene and might be linked to the distinct subcellular localization of each DGAT, i.e. YlDga1 being localized in LBs, while YlDga2 being localized in a structure strongly resembling the endoplasmic reticulum.


Subject(s)
Diacylglycerol O-Acyltransferase/biosynthesis , Gene Expression , Lipid Droplets/metabolism , Yarrowia/cytology , Yarrowia/enzymology , Diacylglycerol O-Acyltransferase/genetics , Gene Dosage , Lipid Metabolism , Yarrowia/metabolism
14.
Appl Microbiol Biotechnol ; 99(19): 8065-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26078110

ABSTRACT

Yarrowia lipolytica is a promising platform for single cell oil production. It is well-known for its metabolism oriented toward utilization of hydrophobic substrates and accumulation of storage lipids. Multiple copies of DGA2 under constitutive promoter were introduced into the Q4 strain, a quadruple mutant deleted for the four acyltransferases (Δdga1, Δdga2, Δlro1, and Δare1) to improve lipid accumulation. The Q4-DGA2 x3 strain contains three copies of DGA2. Further increase in accumulation was accomplished by blocking the ß-oxidation pathway through MFE1 gene deletion yielding Q4-Δmfe DGA2 x3. In order to use molasses as a substrate for single cell oil production, sucrose utilization was established by expressing the Saccharomyces cerevisiae SUC2 gene yielding Q4-SUC2 DGA2 x3 and Q4-Δmfe SUC2 DGA2 x3. During cultivation on sucrose medium with a carbon to nitrogen ratio of 80, both strains accumulated more than 40 % of lipids, which was a 2-fold increase in lipid storage. Q4-Δmfe SUC2 DGA2 x3 accumulated more lipids than Q4-SUC2 DGA2 x3 (49 vs. 43 %) but yielded less biomass (13.7 vs. 15 g/L). When grown on 8 % (v/v) molasses, both strains accumulated more than 30 % of lipids after 3 days, while biomass yield was higher in Q4-SUC2 DGA2 x3 (16.4 vs. 14.4 g/L). Further addition of molasses at 72 h resulted in higher biomass yield, 26.6 g/L for Q4-SUC2 DGA2 x3, without modification of lipid content. This work presents genetically modified strains of Y. lipolytica as suitable tools for direct conversion of industrial molasses into value added products based on single cell oils.


Subject(s)
Acyltransferases/genetics , Fungal Proteins/genetics , Gene Dosage , Molasses/microbiology , Oils/metabolism , Yarrowia/metabolism , Acyltransferases/metabolism , Fungal Proteins/metabolism , Molasses/analysis , Yarrowia/enzymology , Yarrowia/genetics
15.
Lipids ; 50(7): 621-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25908426

ABSTRACT

The role of cis-vaccenic acid (18:1n-7) in the reduction of unsaturated fatty acids toxicity was investigated in baker's yeast Saccharomyces cerevisiae. The quadruple mutant (QM, dga1Δ lro1Δ are1Δ are2Δ) deficient in enzymes responsible for triacylglycerol and steryl ester synthesis has been previously shown to be highly sensitive to exogenous unsaturated fatty acids. We have found that cis-vaccenic acid accumulated during cultivation in the QM cells but not in the corresponding wild type strain. This accumulation was accompanied by a reduction in palmitoleic acid (16:1n-7) content in the QM cells that is consistent with the proposed formation of cis-vaccenic acid by elongation of palmitoleic acid. Fatty acid analysis of individual lipid classes from the QM strain revealed that cis-vaccenic acid was highly enriched in the free fatty acid pool. Furthermore, production of cis-vaccenic acid was arrested if the mechanism of fatty acids release to the medium was activated. We also showed that exogenous cis-vaccenic acid did not affect viability of the QM strain at concentrations toxic for palmitoleic or oleic acids. Moreover, addition of cis-vaccenic acid to the growth medium provided partial protection against the lipotoxic effects of exogenous oleic acid. Transformation of palmitoleic acid to cis-vaccenic acid is thus a rescue mechanism enabling S. cerevisiae cells to survive in the absence of triacylglycerol synthesis as the major mechanism for unsaturated fatty acid detoxification.


Subject(s)
Fatty Acids, Monounsaturated/analysis , Mutation , Oleic Acids/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Culture Media/chemistry , Culture Media/pharmacology , Diacylglycerol O-Acyltransferase/deficiency , Fatty Acids, Monounsaturated/toxicity , Oleic Acids/pharmacology , Saccharomyces cerevisiae/enzymology , Sterol O-Acyltransferase/deficiency , Triglycerides/biosynthesis
16.
Article in English | MEDLINE | ID: mdl-20863742

ABSTRACT

The photophysical properties and photochemical stability of two novel D-π-A-π-D systems based on a benzothiazole core and terminal N,N-dimethylaminophenyl and N,N-diphenylaminophenyl groups were investigated. The quantum yield of photoreactions (Φ) was determined for various oxygen concentrations in the solvent (CH2Cl2) and various irradiation wavelengths. Trans-cis photoisomerization is proposed as a photobleaching mechanism during irradiation at longer wavelength due to charge-transfer transitions. Solution deoxygenation led to an unusual decrease in the photostability of the compounds investigated, most likely because of cation radical formation. The population of higher excited states for short-wavelength irradiation opened another degradation pathway and the overall degradation percentage decreased in comparison with long-wavelength irradiation. We assume that photoisomerization of the second double bond and electron transfer to CH2Cl2 (and subsequent oxidation reactions) contribute to this slower degradation branch. Singlet oxygen contributes significantly, albeit to the smallest values of Φ, to the overall photodegradation for both types of irradiation.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Photochemistry , Algorithms , Benzothiazoles/radiation effects , Drug Stability , Electrons , Light , Models, Biological , Photochemistry/instrumentation , Photochemistry/methods , Photolysis , Singlet Oxygen/chemistry
17.
J Org Chem ; 75(9): 3053-68, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20359209

ABSTRACT

A series of novel heterocycle-based dyes with donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D) structural motif, where benzothiazole serves as an electron-withdrawing core, have been designed and synthesized via palladium-catalyzed Sonogashira and Suzuki-type cross-coupling reactions. All the target chromophores show strong one-photon and two-photon excited emission. The maximum two-photon absorption (TPA) cross sections delta(TPA) of the prepared derivatives bearing diphenylamino functionalities occur at wavelengths ranging from 760 to 800 nm and are as large as approximately 900-1100 GM. One- and two-photon absorption characteristics of the title dyes have also been investigated by using density functional theory (DFT) and the structure-property relationships are discussed. The TPA cross sections calculated by means of quadratic response time-dependent DFT using the Coulomb-attenuated CAM-B3LYP functional support the experimentally observed trends within the series, as well as higher delta(TPA) values of the title compounds compared to those of analogous fluorene or carbazole-derived dyes. In contrast, the traditional B3LYP functional was not successful in predicting the observed trend of TPA cross sections for systems with different central cores. In general, structural modification of the pi-bridge composition by replacement of ethynylene (alkyne) with E-ethenylene (alkene) linkages and/or replacement of dialkylamino electron-donating edge substituents by diarylamino ones results in an increase of delta(TPA) values. The combination of large TPA cross sections and high emission quantum yields makes the title benzothiazole-based dyes attractive for applications involving two-photon excited fluorescence (TPEF).

18.
Molecules ; 14(12): 5382-8, 2009 Dec 23.
Article in English | MEDLINE | ID: mdl-20032900

ABSTRACT

Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol - type condensation reactions between 2-methylbenzothiazole-N-oxide and para-substituted benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull molecule properties. Four compounds were tested against various bacterial strains as well as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared analogous benzothiazolium salts, only weak activity was recorded.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Anti-Bacterial Agents/chemistry , Antiprotozoal Agents/chemistry , Benzothiazoles/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...