Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Acta Chir Orthop Traumatol Cech ; 90(3): 188-197, 2023.
Article in English | MEDLINE | ID: mdl-37395426

ABSTRACT

PURPOSE OF THE STUDY Infections of joint replacements represent one of the most serious problems in contemporary orthopedics. The joint infections treatment is usually multimodal and involves various combinations of drug delivery and surgical procedures. The aim of this study was to evaluate and compare the bacteriostatic and bactericidal properties of the most common antibiotic carriers used in orthopedic surgery: bone cements mixed with antibiotic and porous calcium sulfate mixed with antibiotic. MATERIAL AND METHODS Three commercial bone cements (Palacos®, Palacos® R+G, Vancogenx®) and commercial porous sulfate (Stimulan®) were prepared with a known concentration of vancomycin (a glycopeptide antibiotic). Specifically, for the purpose of our study, the testing specimens were prepared to release 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 mg of vancomycin into 1 liter of solution. The specimens with increasing amount of antibiotic were placed in a separate tubes containing 5 mL of Mueller-Hinton broth inoculated with a suspension (0.1 m, McFarland 1) of the reference strain CCM 4223 Staphylococcus aureus to evaluate their bacteriostatic properties (broth dilution method). After this initial incubation and evaluation of the broth dilution method, an inoculum from each tube was transferred onto blood agar plates. After another 24-hour incubation under the same conditions, we evaluated the bactericidal properties (agar plate method). As many as 132 of independent experiments were performed (4 specimens × 11 concentrations × 3 repetitions = 132). RESULTS The bacteriostatic properties of all investigated samples were excellent, perhaps with the exception of the first bone cement (Palacos®). The sample Palacos® started to exhibit bacteriostatic properties at concentrations ≥ 8 mg/mL, while all other samples (Palacos R+G®, Vancogenx®, and Stimulan®) were bacteriostatic in the whole concentration range starting from 1 mg/mL. The bacteriocidic properties did not show such clear trends, but correlated quite well with different properties of the investigated samples during mixing - the most homogeneous samples seemed to exhibit the best and the most reproducible results. DISCUSSION The reliable and reproducible comparison of ATB carriers is a difficult task. The situation is complicated by high numbers of local antibiotic carriers on the market, numerous antibiotics used, and differences in clinical trials at different laboratories. Simple in vitro testing of bacteriostatic and bacteriocidic properties represents a simple and efficient approach to the problem. CONCLUSIONS The study confirmed that the two most common commercial systems used in the orthopedic surgery (bone cements and porous calcium sulfate) prevent bacterial growth (bacteriostatic effect), but they may not be 100% efficient in complete elimination of bacteria (bacteriocidic effect). The scattered results in the case of bacteriocidic tests seemed to be connected with the homogeneity of ATB dispersion in the systems and with the lower reproducibility of the employed agar plate method. Key words: local release of antibiotics; bone cements; calcium sulfate; antimicrobial susceptibility.


Subject(s)
Orthopedic Procedures , Orthopedics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Calcium Sulfate , Vancomycin/pharmacology , Bone Cements/pharmacology , Bone Cements/therapeutic use , Agar , Reproducibility of Results , Polymethyl Methacrylate/chemistry
2.
Acta Chir Orthop Traumatol Cech ; 89(2): 121-128, 2022.
Article in Czech | MEDLINE | ID: mdl-35621402

ABSTRACT

PURPOSE OF THE STUDY In clinical practice UHMWPE is the most commonly used material for manufacturing articular components of joint replacements. The purpose of this study is to find out whether repeated ethylene oxide sterilization results in oxidative degradation of UHMWPE or not and also whether the oxidative degradation of various types of ethylene oxide-sterilized UHMWPE depends on storage time or not. MATERIAL AND METHODS The set included 12 samples of UHMWPE (three samples with different modifications (virgin PE, with E vitamin and cross-linked with thermal treatment) and different number of sterilizations (0×-3×)). The set also included 8 samples of commercial components of hip or knee replacements sterilized with ethylene oxide and stored for different storage periods. The oxidative degradation was assessed by infrared microspectroscopy, based on which the oxidation index (OI), transvinylene index (VI), crystallinity index (CI) and E vitamin index (EI) were calculated. Mechanical properties of UHMWPE were obtained through microhardness measurements. Statistical processing of the results was performed. RESULTS In all the samples, very low oxidative degradation values were reported (most OI values < 0.1). All radiation crosslinked UHMWPE samples showed an increased VI index and a slightly lower crystallinity index. All unmodified samples (irrespective of whether or not and how many times or how long ago the samples were sterilized with EtO) had almost zero value of VI. Changes in crystallinity were negligible (in the rage of 0.56-0.63), which required very accurate measurements of micromechanical properties. Yet, linear correlation was established between microhardness and crystallinity. DISCUSSION All the mentioned indices changed as anticipated: OIs were very low and slightly increased with time of storage, VIs of radiation crosslinked samples grew in proportion to the total gama radiation dose, CIs decreased in samples thermally treated by remelting, and EIs were very low due to negligible concentration of stabiliser (0.1%) in the samples of medical grade UHMWPE. CONCLUSIONS All samples showed zero or minimum oxidative degradation. This confirmed that neither ethylene oxide sterilization, nor multiple EtO sterilization or longer storage of polymer after ethylene oxide sterilization result in major oxidative degradation. Key words: UHMWPE, ethylene oxide, sterilization, oxidation, infrared spectroscopy, microhardness.


Subject(s)
Arthroplasty, Replacement , Ethylene Oxide , Humans , Polyethylenes , Sterilization/methods , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL
...