Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36556751

ABSTRACT

This paper presents the results of a research study and analysis conducted to determine the degree of anisotropy of asphalt concrete in terms of its initial elastic properties. The analysis of asphalt concrete was focused on determining the effective constrained stiffness modulus in three mutually perpendicular directions based on the finite element method. The internal structure of the asphalt concrete was divided into the mortar phase and the mineral aggregate phase. Static creep tests using the Bending Beam Rheometer were conducted for the mortar phase to fit the rheological model. The aggregate arrangement and orientation were analysed using an image analytical technique for the mineral phase. The Finite Element Method (FEM) meshes were prepared based on grey images with an assumption of plane strain in 2D formulation. Using the FEM model, the tension/compression tests using selected characteristic directions were conducted, and the effective constrained stiffness moduli were estimated. This study showed a dominant horizontal direction for all coarse aggregates resulting from the normal force of the road roller and paving machines during laying and compaction on a road site. Depending on the values of the mortar's mechanical parameters and the load direction, the effective stiffness modulus might differ by ±20%. Based on the FEM analysis, this result was proven and commented on through an effective directional modulus evaluation and a presentation of internal stress distribution. Depending on the shape and orientation of the aggregates, it was possible to observe local "stress bridging" (transferring stresses from aggregate to aggregate when contacting). Moreover, the rheological properties of the mortar were considered by assuming two limiting situations (instantaneous and relaxed moduli), determining the bands of all possible solutions. In the performed FEM analysis, the influence of the Poisson ratio was also considered. The analysed asphalt concrete tends to be isotropic when the Poisson's mortar ratio is close to the value of 0.5, which agrees with the physical expectations. The obtained results are limited to particular asphalt concrete and should not be extrapolated to other asphalt mixture types without prior analysis.

2.
Materials (Basel) ; 14(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885501

ABSTRACT

In this paper, a three-dimensional model of nonlinear elastic material is proposed. The model is formulated in the framework of Green elasticity, which is based on the specific elastic energy potential. Equivalently, this model can be associated to the deformation theory of plasticity. The constitutive relationship, derived from the assumed specific energy, divides the material's behavior into two stages: the first one starts with an initial almost linear stress-strain relation which, for higher strain, smoothly turns into the second stage of hardening. The proposed relation mimics the experimentally observed response of ductile metals, aluminum alloys in particular. In contrast to the classic deformation theory of plasticity or the plastic flow theory, the presented model can describe metal compressibility in both stages of behavior. The constitutive relationship is non-reversible expressing stress as a function of strain. Special attention is given to the calibration process, in which a one-dimensional analog of the three-dimensional model is used. Various options of calibration based on uniaxial stress test are extensively discussed. A finite element code is written and verified in order to validate the model. Solutions of selected problems, obtained via ABAQUS, confirm the correctness of the model and its usefulness in numerical simulations, especially for buckling.

SELECTION OF CITATIONS
SEARCH DETAIL
...