Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 309(Pt 1): 136662, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36195127

ABSTRACT

The main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution; (iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Herzegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured by X-ray fluorescence spectroscopy (XRF). The content of heavy metals was measured by inductively coupled plasma-optical emission spectrometry (ICP/OES). Heavy metals had a specific concentration range, which followed in soil samples from depth 0-40 cm the common order (low to high): Hg < Cd < As < Co < Pb < Ni < Cu < Cr < Zn, and from depth 40-80 cm: Hg < Cd < As < Pb < Co < Ni < Cu < Cr < Zn. The grouping of the examined parameters according to rock types, soil types, and localities indicated the separation of carbonate rocks from other substrates, luvisol, and rendzina from other soil types, and samples from BA, SL, and IT from other localities. According to sources apportionment As, Pb and Zn are of anthropogenic origin, Cd, Co, Cr, and Ni are of geogenic origin, while the middle position of Cu and Hg indicates a combined contribution of both sources. Elements Cd and Hg indicated severe to extremely severe enrichment with a mean value of 24.3 and 70.6, respectively. Based on the determined values Ni, Cr, As and Cd do not pose a health risk.


Subject(s)
Fagus , Mercury , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Forests , Carbonates/analysis , Mercury/analysis , China
2.
Polymers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671005

ABSTRACT

The mutual impact of low-quality lignite and high-density polyethylene (HDPE) during open system pyrolysis was investigated, aiming to improve utilization of lignite with simultaneous treatment of HDPE waste. Pyrolysis of lignite, HDPE, and their mixture (mass ratio, 1:1) was performed at temperatures 400, 450, 500, 550, and 600 °C. Initial substrates and pyrolysis products were characterized by thermogravimetric analysis (TGA), gas chromatography-mass spectrometry (GC-MS), specific carbon isotope analysis of individual hydrocarbons (δ13C), Rock-Eval pyrolysis, and elemental analysis. The positive synergetic effect during co-pyrolysis of lignite/HDPE mixture was observed at temperatures ≥450 °C, with the greatest being at 500 °C. The highest yield of liquid co-pyrolysis products with a similar composition to that of crude oils is also noticed at 500 °C. The yields of liquid and gaseous products and quality of pyrolytic products obtained by co-pyrolysis of lignite/HDPE mixture are notably improved compared with pyrolysis of lignite alone. On the other hand, data obtained from pyrolysis of HDPE alone indicate that it cannot be concurrent to well-developed catalytic thermal processes for polymer recycling. However, concerning the huge amount of produced HDPE, at least part of this plastic material can be reused for advanced thermal treatment of lignite, particularly in countries where this low-rank coal represents the main source of energy.

3.
Environ Sci Pollut Res Int ; 28(2): 2479-2483, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33175354

ABSTRACT

The paper briefly presents goals, activities, challenges, and outcomes of the NETCHEM project ( http://www.netchem.ac.rs/ ) that was co-funded by the Erasmus+ Program of European Union (573885-EPP-1-2016-1-RS-EPPKA2- CBHE-JP). The project has been started in October 2016 and with extension lasted until April 2020. Western Balkan region has been targeted by upgrading capacities for education and research in environmental and food analysis in cooperation with partners from France, the UK, and Czech Republic. NETCHEM platform providing Web Accessed Remote Instrumental Analytical Laboratories (WARIAL) network, Database service and Open education system was created in order to improve the cooperation, educational, and research capacities of Higher Education Institutions involved, but also targeting whether audience not only from academic domain but from industry as well. The NETCHEM platform is free for access to public; thus, the external users to NETCHEM consortium can not only see its content but also actively participate, enter Database and WARIAL network, and upload their own educational/research material.


Subject(s)
Universities , Czech Republic , European Union , France
4.
Environ Geochem Health ; 42(2): 693-707, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31446575

ABSTRACT

The objective of this study is geochronological investigation of sedimentological and inorganic composition, in the Danube Djerdap Lake sediments in order to obtain reliable information about former pollution. Eleven samples were taken from the 135-cm-deep sediment core drilled at the Orlova location. Since the core represents sediments deposited during 1972-2016, the sedimentation rate of ~ 3 cm year-1 was estimated. Grain size, mineralogical and geochemical composition was determined. Sediments are sandy silts and clayey silts, and only the deepest and shallowest layers contain > 30% of sand-size fraction. The highest concentrations of minor elements are found in the oldest sediment (1972-1977) as a consequence of the high flux of the material from variable sources. During the sedimentation period (1975-1990), the concentrations of analyzed elements are generally decreasing until the beginning of 1990s. After this period, there are two distinct decreases and two distinct increases in concentrations of elements. The fluctuations in minor element concentrations are a consequence of both natural and anthropogenic sources. Granitic rocks situated south are source of minerals that carry minor elements. Enrichment Factor, Geoaccumulation Index, Contamination Factor and Pollution Load Index indicate that concentrations of certain minor elements at specific depositional periods have anthropogenic source.


Subject(s)
Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments/analysis , Hydrology/methods , Lakes/analysis , Metals/analysis , Minerals/analysis , Serbia
SELECTION OF CITATIONS
SEARCH DETAIL
...