Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 129(2): 89-99, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12669233

ABSTRACT

PURPOSE: Chromosomal aberrations and the nuclear topography of retinoblastoma tumour cells as well as lymphocytes of patients suffering from the familiar or sporadic form of retinoblastoma were studied. METHODS: Fluorescence in situ hybridisation (FISH) on fresh, paraffin-embedded tumour tissues and on peripheral blood leukocytes was used for cytogenetic analysis. The cell cycle profile and induction of apoptosis was studied by flow cytometry and gene expression changes were detected by RT-PCR. RESULTS: Using the repeated FISH technique, the average distances between the nuclear membrane and the fluorescence gravity centre (FGC) of seven selected chromosomes were determined in the same tumour population and three other cell types. Chromosome order in positioning from the nuclear membrane was similar in all cell populations investigated. Our experimental studies were focused on specific genetic loci relevant for retinoblastoma tumour pathogenesis. We revealed a certain heterogeneity in the copy number of the Rb1, N-myc, and TP53 gene loci in tumour cells. In addition, in lymphocytes isolated from peripheral blood of the patients, a high degree of copy number heterogeneity was also detected. In 60% of analysed retinoblastomas we observed numerical aberration involving the centromeric region of chromosome 6. In these tumours, apoptotic bodies were found irrespective of clinical therapy. Chromosome instability seems to be a typical feature of primary retinoblastomas as well as of the human pseudodiploid cell line Y79. These cells, of a hereditary form of retinoblastoma (Y79), were irradiated by gamma rays and exposed to anti-tumour drugs such as etoposide, vincristine, and cisplatin. These treatments induced apoptosis, changes in the cell cycle profile, and specific modifications in the nuclear topography of selected loci. Treatment with a non-lethal concentration of hydroxyurea was shown to induce the loss of the amplified N-myc gene involved in the homogenously staining region (HSR) that was found to be associated with the nuclear membrane of retinoblastoma Y79 cells. CONCLUSIONS: We assume that not only cytological and cytogenetic parameters but also aberrant chromatin structures and their nuclear topography can be useful tools for optimal tumour marker specification.


Subject(s)
Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinoblastoma/genetics , Retinoblastoma/pathology , Apoptosis , Flow Cytometry , Humans , In Situ Hybridization, Fluorescence , Ploidies , Reverse Transcriptase Polymerase Chain Reaction
2.
J Struct Biol ; 139(2): 76-89, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12406690

ABSTRACT

The nuclear arrangement of the ABL, c-MYC, and RB1 genes was quantitatively investigated in human undifferentiated HL-60 cells and in a terminally differentiated population of human granulocytes. The ABL gene was expressed in both cell types, the c-MYC gene was active in HL-60 cells and down-regulated in granulocytes, and expression of the RB1 gene was undetectable in HL-60 cells but up-regulated in granulocytes. The distances of these genes to the nuclear center (membrane), to the center of the corresponding chromosome territory, and to the nearest centromere were determined. During granulopoesis, the majority of selected genetic structures were repositioned closer to the nuclear periphery. The nuclear reposition of the genes studied did not correlate with the changes of their expression. In both cell types, the c-MYC and RB1 genes were located at the periphery of the chromosome territories regardless of their activity. The centromeres of chromosomes 8 and 13 were always positioned more centrally within the chromosome territory than the studied genes. Close spatial proximity of the c-MYC and RB1 genes with centromeric heterochromatin, forming the chromocenters, correlated with gene activity, although the nearest chromocenter of the silenced RB1 gene did not involve centromeric heterochromatin of chromosome 13 where the given gene is localized. In addition, the role of heterochromatin in gene silencing was studied in retinoblastoma cells. In these differentiated tumor cells, one copy of the RB1 gene was positioned near the heterochromatic chromosome X, and reduced RB1 gene activity was observed. In the experiments presented here, we provide evidence that the regulation of gene activity during important cellular processes such as differentiation or carcinogenesis may be realized through heterochromatin-mediated gene silencing.


Subject(s)
Cell Nucleus/chemistry , Genes, abl/genetics , Proto-Oncogene Proteins c-myc/genetics , Retinoblastoma Protein/genetics , Cell Differentiation , Cell Membrane/metabolism , Cell Nucleus/metabolism , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 8 , Chromosomes, Human, X , DNA Methylation , G1 Phase , Gene Silencing , HL-60 Cells , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Humans , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-abl/biosynthesis , Proto-Oncogene Proteins c-myc/biosynthesis , Resting Phase, Cell Cycle , Retinoblastoma Protein/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...