Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37891936

ABSTRACT

BACKGROUND: After birth, breast milk (BM) is a known essential source of antioxidants for infants. We analyzed the non-enzymatic total antioxidant capacity (TAC), oxygen radical absorbance capacity (ORAC), and glutathione, calcium, transferrin, and total protein levels of human breast milk before and after Holder pasteurization (HoP). METHODS: The collected donor BM samples were pasteurized with HoP. RESULTS: HoP decreased TAC (-12.6%), ORAC (-12.1%), transferrin (-98.3%), and total protein (-21.4%) levels; HoP did not influence the glutathione concentration, and it increased the total calcium (+25.5%) concentration. Mothers who gave birth via Cesarean section had significantly lower TAC in their BM. TAC and glutathione levels were elevated in the BM of mothers over the age of 30. BM produced in the summer had higher glutathione and calcium levels compared to BM produced in the winter. The glutathione concentration in term milk samples was significantly higher in the first two months of lactation compared to the period between the third and sixth months. The transferrin level of BM for female infants was significantly higher than the BM for boys, and mothers with a BMI above 30 had increased transferrin in their samples. CONCLUSIONS: Antioxidant levels in human milk are influenced by numerous factors. Environmental and maternal factors, the postpartum age at breast milk collection, and Holder pasteurization of the milk influence the antioxidant intake of the infant.

2.
Cell Cycle ; 22(17): 1921-1936, 2023 09.
Article in English | MEDLINE | ID: mdl-37635373

ABSTRACT

Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Histone Chaperones/genetics , Cell Division , Cell Cycle Proteins/metabolism , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Cell Rep ; 37(3): 109835, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686342

ABSTRACT

The DREAM (dimerization partner [DP], retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell-cycle and other genes, but its mechanism of action is unclear. Here, we demonstrate that two C. elegans THAP domain proteins, LIN-15B and LIN-36, co-localize with DREAM and function by different mechanisms for repression of distinct sets of targets. LIN-36 represses classical cell-cycle targets by promoting DREAM binding and gene body enrichment of H2A.Z, and we find that DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B represses germline-specific targets in the soma by facilitating H3K9me2 promoter marking. We further find that LIN-36 and LIN-15B differently regulate DREAM binding. In humans, THAP proteins have been implicated in cell-cycle regulation by poorly understood mechanisms. We propose that THAP domain proteins are key mediators of Rb/DREAM function.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Retinoblastoma Protein/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Methylation , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Retinoblastoma Protein/genetics , Transcription Factors/genetics
4.
EMBO Rep ; 17(1): 79-93, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582768

ABSTRACT

Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1(+) experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin/genetics , Chromatin/metabolism , Nucleosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA, Intergenic , Gene Silencing , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Promoter Regions, Genetic , RNA Polymerase II/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/metabolism , Transcription, Genetic
5.
Cell Cycle ; 14(1): 123-34, 2015.
Article in English | MEDLINE | ID: mdl-25602522

ABSTRACT

HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.


Subject(s)
Nucleosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Transcription Factors/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Histones/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics
6.
Nat Commun ; 5: 4091, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24909977

ABSTRACT

DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.


Subject(s)
Acetyltransferases/metabolism , Chromatin/metabolism , DNA End-Joining Repair , DNA Repair , DNA, Fungal/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Recombinational DNA Repair , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Acetylation , Methylation , Schizosaccharomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...