Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611524

ABSTRACT

Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.

2.
Biomolecules ; 12(3)2022 03 05.
Article in English | MEDLINE | ID: mdl-35327598

ABSTRACT

Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (ß-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies ß-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-ß-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 µM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.


Subject(s)
Glycoside Hydrolases , Lepidium sativum , Chromatography, Affinity , Glycoside Hydrolases/metabolism , Isothiocyanates , Lepidium sativum/metabolism , Seeds/metabolism , Sulfoxides
3.
Can J Microbiol ; 65(9): 653-667, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31059650

ABSTRACT

We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs' physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.


Subject(s)
Peptide Hydrolases/metabolism , Trichoderma/enzymology , Aspergillus niger/enzymology , Aspergillus niger/physiology , Botrytis/enzymology , Botrytis/physiology , Fungal Proteins/metabolism , Fusarium/enzymology , Fusarium/physiology , Penicillium/enzymology , Penicillium/physiology , Proteolysis , Spores, Fungal , Trichoderma/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...