Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 939: 173501, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38797398

ABSTRACT

Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.


Subject(s)
Charcoal , Soil Pollutants , Soil , Sulfamethoxazole , Sulfamethoxazole/chemistry , Charcoal/chemistry , Adsorption , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Clay/chemistry
2.
Plants (Basel) ; 11(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631720

ABSTRACT

Plant monoterpenes have received attention for their ecological functions and as potential surrogates for synthetic herbicides, but very little is known about the processes that govern their behavior in the soil environment, and even less about the possible enantioselectivity in the functions and environmental behavior of chiral monoterpenes. We characterized the adsorption and dissipation of the two enantiomers of the chiral monoterpene pulegone in different soils, and their phytotoxicity to different plant species through Petri dish and soil bioassays. R- and S-pulegone displayed a low-to-moderate non-enantioselective adsorption on the soils that involved weak interaction mechanisms. Soil incubation experiments indicated that, once in the soil, R- and S-pulegone are expected to suffer rapid volatilization and scarcely enantioselective, biodegradation losses. In Petri dishes, the phytotoxicity of pulegone and its enantioselectivity to Lactuca sativa, Hordeum vulgare, and Eruca sativa was species-dependent. Lactuca sativa was the most sensitive species and showed higher susceptibility to S- than to R-pulegone. Biodegradation and volatilization losses greatly reduced the phytotoxic activity of S-pulegone applied to soil, but the addition of a highly-adsorptive organoclay stabilized the monoterpene and increased its phytotoxic effect. Stabilization by adsorption may represent an important mechanism by which the bioactivity of plant monoterpenes in soils can be increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...