Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176851

ABSTRACT

The persistence of subtropical seasonally dry forests urgently requires the implementation of ex situ conservation and restoration programs. We studied variation in seed traits and dormancy of six native species growing in seasonally dry Chaco forests of Argentina. We documented high intra- and interspecific variability in seed traits and dormancy. Fresh seeds of Geoffroea decorticans and Parasenegalia visco (Fabaceae) were water-permeable and nondormant (ND), while those of Parkinsonia praecox and Vachellia aroma (Fabaceae) were water-impermeable and had physical dormancy (PY). Seeds of Schnopsis lorentzii (Anacardiaceae) and Sarcomphalus mistol (Rhamnaceae) were water-permeable and had physiological dormancy (PD). Mechanical and chemical scarification were the most effective methods to break PY, and dry storage for 3 months was effective in breaking PD. Seeds of large-seeded species were ND or had PD, and those of small-seeded species had PY. Species inhabiting moist habitats had ND seeds, whereas those from seasonally dry habitats had seeds with PY or PD. These results suggest that seed traits and dormancy are species-specific and that intraspecific variation in seed traits is likely associated with high phenotypic plasticity of species in response to local environmental heterogeneity. These findings should be considered at the time of implementation of conservation techniques and for seed sourcing decisions for restoration.

2.
Glob Chang Biol ; 23(12): 5309-5317, 2017 12.
Article in English | MEDLINE | ID: mdl-28657127

ABSTRACT

Recruitment from seeds is among the most vulnerable stage for plants as global temperatures change. While germination is the means by which the vast majority of the world's flora regenerate naturally, a framework for accurately predicting which species are at greatest risk of germination failure during environmental perturbation is lacking. Taking a physiological approach, we assess how one family, the Cactaceae, may respond to global temperature change based on the thermal buffering capacity of the germination phenotype. We selected 55 cactus species from the Americas, all geo-referenced seed collections, reflecting the broad environmental envelope of the family across 70° of latitude and 3700 m of altitude. We then generated empirical data of the thermal germination response from which we estimated the minimum (Tb ), optimum (To ) and ceiling (Tc ) temperature for germination and the thermal time (θ50 ) for each species based on the linearity of germination rate with temperature. Species with the highest Tb and lowest Tc germinated fastest, and the interspecific sensitivity of the germination rate to temperature, as assessed through θ50 , varied tenfold. A left-skewed asymmetry in the germination rate with temperature was relatively common but the unimodal pattern typical of crop species failed for nearly half of the species due to insensitivity to temperature change at To . For 32 fully characterized species, seed thermal parameters correlated strongly with the mean temperature of the wettest quarter of the seed collection sites. By projecting the mean temperature of the wettest quarter under two climate change scenarios, we predict under the least conservative scenario (+3.7°C) that 25% of cactus species will have reduced germination performance, whilst the remainder will have an efficiency gain, by the end of the 21st century.


Subject(s)
Adaptation, Physiological , Cactaceae/physiology , Germination , Temperature , Altitude , Cactaceae/growth & development , Climate Change , Models, Theoretical , Phenotype , Seeds/growth & development , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...