Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38343821

ABSTRACT

People with Parkinson's disease (PWP) face critical challenges, including lack of access to neurological care, inadequate measurement and communication of motor symptoms, and suboptimal medication management and compliance. We have developed QDG-Care: a comprehensive connected care platform for Parkinson's disease (PD) that delivers validated, quantitative metrics of all motor signs in PD in real time, monitors the effects of adjusting therapy and medication adherence and is accessible in the electronic health record. In this article, we describe the design and engineering of all components of QDG-Care, including the development and utility of the QDG Mobility and Tremor Severity Scores. We present the preliminary results and insights from the first at-home trial using QDG-Care. QDG technology has enormous potential to improve access to, equity of, and quality of care for PWP, and improve compliance with complex time-critical medication regimens. It will enable rapid "Go-NoGo" decisions for new therapeutics by providing high-resolution data that require fewer participants at lower cost and allow more diverse recruitment.

2.
Res Sq ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961117

ABSTRACT

Background: Emergent tremor in Parkinson's disease (PD) can occur during sustained postures or movement that is different from action tremor. Tremor can contaminate the clinical rating of bradykinesia during finger tapping. Currently, there is no reliable way of isolating emergent tremor and measuring the cardinal motor symptoms based on voluntary movements only. Objective: Investigate whether emergent tremor during repetitive alternating finger tapping (RAFT) on a quantitative digitography (QDG) device can be reliably identified and distinguished from voluntary tapping. Methods: Ninety-six individuals with PD and forty-two healthy controls performed a thirty-second QDG-RAFT task and the Movement Disorders Society - Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III). Visual identification of tremor during QDG-RAFT was labelled by an experienced movement disorders specialist. Two methods of identifying tremor were investigated: 1) physiologically-informed temporal thresholds 2) XGBoost model using temporal and amplitude features of tapping. Results: The XGBoost model showed high accuracy for identifying tremor (area under the precision-recall curve of 0.981) and outperformed temporal-based thresholds. Percent time duration of classifier-identified tremor showed significant correlations with MDS-UPDRS III tremor subscores (r = 0.50, P < 0.0001). There was a significant change in QDG metrics for bradykinesia, rigidity and arrhythmicity after tremor strikes were excluded (p < 0.01). Conclusions: Emergent tremor during QDG-RAFT has a unique digital signature and the duration of tremor correlated with the MDS-UPDRS III tremor items. When involuntary tremor strikes were excluded, the QDG metrics of bradykinesia and rigidity were significantly worse, demonstrating the importance of distinguishing tremor from voluntary movement when rating bradykinesia.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3085-3088, 2022 07.
Article in English | MEDLINE | ID: mdl-36085944

ABSTRACT

Brain stimulation has emerged as a novel therapy for ischemic stroke, a major cause of brain injury that often results in lifelong disability. Although past works in rodents have demonstrated protective effects of stimulation following stroke, few of these results have been replicated in humans due to the anatomical differences between rodent and human brains and a limited understanding of stimulation-induced network changes. Therefore, we combined electrophysiology and histology to study the neuroprotective mechanisms of electrical stimulation following cortical ischemic stroke in non-human primates. To produce controlled focal lesions, we used the photothrombotic method to induce targeted vasculature damage in the sensorimotor cortices of two macaques while collecting electrocorticography (ECoG) signals bilaterally. In another two monkeys, we followed the same lesioning procedures and applied repeated electrical stimulation via an ECoG electrode adjacent to the lesion. We studied the protective effects of stimulation on neural dynamics using ECoG signal power and coherence. In addition, we performed histological analysis to evaluate the differences in lesion volume. In comparison to controls, the ECoG signals showed decreased gamma power across the sensorimotor cortices in stimulated animals. Meanwhile, Nissl staining revealed smaller lesion volumes for the stimulated group, suggesting that electrical stimulation may exert neuroprotection by suppressing post-ischemic neural activity. With the similarity between NHP and human brains, this study paves the path for developing effective stimulation-based therapy for acute stroke in clinical studies.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Sensorimotor Cortex , Stroke , Animals , Electric Stimulation , Primates , Stroke/complications , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...