Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13761, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877054

ABSTRACT

Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.


Subject(s)
Biodegradation, Environmental , Cities , Soil Pollutants , Soil Pollutants/metabolism , Soil Pollutants/analysis , Pennisetum/metabolism , Desert Climate , Soil/chemistry , Plant Roots/metabolism , Plant Leaves/metabolism , Brassica/metabolism , Brassica/growth & development , Metals, Heavy/metabolism , Metals, Heavy/analysis
2.
Plants (Basel) ; 12(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836147

ABSTRACT

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

3.
Environ Sci Pollut Res Int ; 30(14): 42255-42266, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645601

ABSTRACT

Heavy metal contamination of food crop plants is viewed as a global issue. Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr), zinc (Zn), nickel (Ni), arsenic (As), cobalt (Co), and mercury (Hg) are poisonous. Depending on their concentration and capacity for bioaccumulation, they can provide a range of health risks.This research sought to investigate the effects of toxic metals (TMs) on the growth characteristics of produced tomatoes grown under wastewater irrigation. Additionally, it looked into the potential repercussions of both domestic and foreign individuals consuming this plant. In south Cairo, Egypt, two study locations were looked into: a control site in Abu Ragwan, which received water from tributaries of the Nile River, and a contaminated site in El-Shobak El-Sharky, which had raw industrial wastewater. The nutrients of soil and tomato plants (N, P, and K) decreased (P < 0.01), while TMs increased (P < 0.001) significantly as a result of using wastewater for irrigation. Except for Cu, all examined TM accumulating in tomato plants' roots as opposed to shoots had a bioaccumulation factor (BF) > 1. However, the tomato plant's shoot had solely undergone Pb and Ni translocation and storage, with a translocation factor (TF) > 1. A significant amount of Fe (5000.1 mg kg-1), Pb (360.7 mg kg-1), and Mn (356.3 mg kg-1) were present in the edible fruits. The ingestion of contaminated crops increases the daily intake rate of metals (DIR). The values of the high hazard quotient (HQ) were obtained (2073.8 and 2558.9 for Pb, 574.0 and 708.3 for Cd, and 41.1 and 50.7 for Fe for adults and children, respectively). Therefore, tomato plants grown in soils irrigated with untreated wastewater may offer a greater danger to human health, indicating that they should not be grown as a crop for human consumption.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Solanum lycopersicum , Trace Elements , Adult , Child , Humans , Cadmium , Wastewater , Lead , Metals, Heavy/analysis , Soil , Nickel , Risk Assessment , Soil Pollutants/analysis , Environmental Monitoring
4.
Environ Sci Pollut Res Int ; 30(15): 43872-43885, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670224

ABSTRACT

Crop plant remediation and detoxification of Zn-contaminated soils may pose a significant threat to food safety and, thus, human health. Therefore, the current study was carried out to assess the ability of six non-food crop plants (NFCP); Zea mays L. cultivar 360 (T360), Z. mays cultivar 123 (T123), Helianthus annuus L., Brassica juncea (L.) Czern., Ricinus communis L., and Simmondsia chinensis (Link) C.K. Schneid to remediate and restore Zn-contaminated soils. The investigated plants tolerate 150 mg/kg of Zn content of the soil, where they had tolerance index (TI) > 1 for all growth criteria, except the root dry weight (DW) of S. chinensis. Z. mays T123 and R. communis were the most susceptible plants, while B. juncea and S. chinensis were moderately tolerant, while H. annuus was the most tolerant to high Zn concentrations in a growing medium. Increasing the soil Zn content led to a significant increase (p < 0.05) in Zn concentration in the various tissues of the six NFCPs. The studied NFCP did not translocate Zn to their grains/seeds; consequently, they can be used safely for Zn-contaminated soils. The Zn content in root and shoot was negatively correlated with the TI of their length and weight, while the translocation factor (TF) of Zn from root to shoot was positively correlated to the TI of the root length and weight. The six studied NFCPs were arranged based on their phytoremediation efficiency as follows: B. juncea (31.86%) > Z. mays T123 (31.14%) > Z. mays T360 (27.59%) > H. annuus (20.85%) > S. chinensis (20.29%) > R. communis (15.3%). All tested NFCPs accumulated significant concentrations of Zn in their roots and shoots, a high Zn uptake potential, and biomass at 150-450 mg/kg of Zn treatments, indicating that these plants are good candidates for the implementation of a new strategy of cultivating NFCP for phytoremediation of Zn-contaminated soils.


Subject(s)
Soil Pollutants , Zinc , Humans , Zinc/analysis , Plants, Edible , Soil Pollutants/analysis , Plant Roots/chemistry , Biodegradation, Environmental , Soil
5.
Front Microbiol ; 13: 813415, 2022.
Article in English | MEDLINE | ID: mdl-35801109

ABSTRACT

Less nutrient availability and drought stress are some serious concerns of agriculture. Both biotic and abiotic stress factors have the potential to limit crop productivity. However, several organic extracts obtained from moringa leaves may induce immunity in plants under nutritional and drought stress for increasing their survival. Additionally, some rhizobacterial strains have the ability to enhance root growth for better nutrient and water uptake in stress conditions. To cover the knowledge gap on the interactive effects of beneficial rhizobacteria and moringa leaf extracts (MLEs), this study was conducted. The aim of this experimental study was to investigate the effectiveness of sole and combined use of rhizobacteria and MLEs against nutritional and drought stress in wheat. Nitrogen-fixing bacteria Pseudomonas aeruginosa (Pa) (108 CFU ml-1) was inoculated to wheat plants with and without foliar-applied MLEs at two different concentrations (MLE 1 = 1:15 v/v and MLE 2 = 1:30 v/v) twice at 25 and 35 days after seed sowing (50 ml per plant) after the establishment of drought stress. Results revealed that Pa + MLE 2 significantly increased fresh weight (FW), dry weight (DW), lengths of roots and shoot and photosynthetic contents of wheat. A significant enhancement in total soluble sugars, total soluble proteins, calcium, potassium, phosphate, and nitrate contents validated the efficacious effect of Pa + MLE 2 over control-treated plants. Significant decrease in sodium, proline, glycine betaine, electrolyte leakage, malondialdehyde, hydrogen peroxide, superoxide dismutase (SOD), and peroxide (POD) concentrations in wheat cultivated under drought stress conditions also represents the imperative role of Pa + MLE 2 over control. In conclusion, Pa + MLE 2 can alleviate nutritional stress and drought effects in wheat. More research in this field is required to proclaim Pa + MLE 2 as the most effective amendment against drought stress in distinct agroecological zones, different soil types, and contrasting wheat cultivars worldwide.

6.
Sci Rep ; 12(1): 9768, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697742

ABSTRACT

Vegetables cultivated on contaminated agricultural soils are being consumed by the public, and consequently cause serious health concerns due to contaminants' dietary intake. The current study examines the safety and sustainability of eating eggplant (Solanum melongena) by looking into the possibility of heavy metals translocation from polluted soils to the edible sections, as well as the health hazards that come with it. Soil and eggplant samples were taken from three contaminated and other three uncontaminated farms to estimate their chemical constituents and plant growth properties. Based on the pollution load index data, the contaminated soils were highly polluted with Fe, Cu, Pb, and Zn; and relatively polluted with Cr, Mn, Cd, Mn, Co, and V. Under contamination stress, the fresh biomass, dry biomass, and production of eggplant were significantly reduced by 41.2, 44.6, and 52.1%, respectively. Likewise, chlorophyll a and b were significantly reduced from 1.51 to 0.69 mg g-1 and 1.36 to 0.64 mg g-1, respectively. The uncontaminated plant shoots had the highest quantities of N, P, and proteins (1.98, 2.08, and 12.40%, respectively), while the roots of the same plants had the highest K content (44.70 mg kg-1). Because eggplant maintained most tested heavy elements (excluding Zn and Pb) in the root, it is a good candidate for these metals' phytostabilization. However, it had the potential to translocate Mn and Zn to its shoot and Pb, Cr, Mn, and Zn to the edible fruits indicating its possibility to be a phytoextractor and accumulator of these metals. Cd, Cu, Ni, Pb, Mn, and Co quantity in the edible sections of eggplant grown in contaminated soils exceeded the permissible level for normal plants, posing health hazards to adults and children. For safety issues and food sustainability, our investigation strongly recommends avoiding, possibly, the cultivation of eggplant in contaminated agricultural lands due to their toxic effects even in the long run.


Subject(s)
Metals, Heavy , Soil Pollutants , Solanum melongena , Adult , Cadmium , Child , Chlorophyll A , Environmental Monitoring , Humans , Lead , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/metabolism , Solanum melongena/metabolism , Wastewater
7.
Sci Rep ; 12(1): 8583, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595800

ABSTRACT

In this study, Rosa damascena leaf powder was evaluated as a biosorbent for the removal of copper from aqueous solutions. Process variables such as the biosorbent dose, pH, and initial copper concentration were optimized using response surface methodology. A quadratic model was established to relate the factors to the response based on the Box-Behnken design. Analysis of variance (ANOVA) was used to assess the experimental data, and multiple regression analysis was used to fit it to a second-order polynomial equation. A biosorbent dose of 4.0 g/L, pH of 5.5, and initial copper concentration of 55 mg/L were determined to be the best conditions for copper removal. The removal of Cu2+ ions was 88.7% under these optimal conditions, indicating that the experimental data and model predictions were in good agreement. The biosorption data were well fitted to the pseudo-second-order and Elovich kinetic models. The combination of film and intra-particle diffusion was found to influence Cu2+ biosorption. The Langmuir and Dubinin-Radushkevich isotherm models best fit the experimental data, showing a monolayer isotherm with a qmax value of 25.13 mg/g obtained under optimal conditions. The thermodynamic parameters showed the spontaneity, feasibility and endothermic nature of adsorption. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the biosorbent before and after Cu2+ biosorption, revealing its outstanding structural characteristics and high surface functional group availability. In addition, immobilized R. damascena leaves adsorbed 90.7% of the copper from aqueous solution, which is more than the amount adsorbed by the free biosorbent (85.3%). The main mechanism of interaction between R. damascena biomass and Cu2+ ions is controlled by both ion exchange and hydrogen bond formation. It can be concluded that R. damascena can be employed as a low-cost biosorbent to remove heavy metals from aqueous solutions.


Subject(s)
Rosa , Water Pollutants, Chemical , Adsorption , Copper/analysis , Hydrogen-Ion Concentration , Ions , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water/chemistry , Water Pollutants, Chemical/analysis
8.
Life (Basel) ; 12(2)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35207560

ABSTRACT

This study investigated the phytochemical contents of Taif's rose pruning wastes and their potential application as phytomedicine, thereby practicing a waste-recycling perspective. In the Al-Shafa highland, four Taif rose farms of various ages were chosen for gathering the pruning wastes (leaves and stems) for phytochemical and pharmacological studies. The leaves and stems included significant amounts of carbohydrates, cardiac glycosides, alkaloids, flavonoids, and other phenolic compounds. The cardiac glycoside and flavonoid contents were higher in Taif rose stems, while the phenolic and alkaloid contents were higher in the plant leaves. Cardiovascular glycosides (2.98-5.69 mg g-1), phenolics (3.14-12.41 mg GAE g-1), flavonoids (5.09-9.33 mg RUE g -1), and alkaloids (3.22-10.96 mg AE g-1) were among the phytoconstituents found in rose tissues. According to the HPLC analysis of the phenolic compounds, Taif's rose contains flavonoid components such as luteolin, apigenin, quercetin, rutin, kaempferol, and chrysoeriol; phenolics such as ellagic acid, catechol, resorcinol, gallic acid, and phloroglucinol; alkaloids such as berbamine, jatrorrhizine, palmatine, reticuline, isocorydine, and boldine. Warm water extract was highly effective against Bacillus subtilis, Escherichia coli, and Proteus vulgaris, whereas methanol and cold water extracts were moderately effective against Aspergillus fumigatus and Candida albicans. The study's findings suggested that Taif's rose wastes could be used for varied medical purposes.

9.
Int J Environ Health Res ; 32(1): 106-120, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32081029

ABSTRACT

The current study aims at forming new prediction models to be employed in the approximating the possible uptake of a range of 10 heavy metals (HMs) (Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by Hordeum vulgare tissues including roots, shoots and grains following its growth in soil amended with sewage sludge (SS) using conditions employed in greenhouses. The present study determined an insignificant difference between the actual and predicted quantities of the HMs in the three tissues using t values. The majority of the predicted quantities of the HMs were acceptable with the exception of Cd in the shoots, Cu in grains and Pb in roots. Consequently, it is possible to use these models in assessing the cultivation of barley plants in soil amended with SS in a safe way, while simultaneously monitoring any potential risks to the health of humans.


Subject(s)
Hordeum , Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/analysis , Sewage , Soil , Soil Pollutants/analysis
10.
Environ Sci Pollut Res Int ; 29(15): 21221-21231, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34755298

ABSTRACT

Due to water scarcity, the use of wastewater to irrigate crops is on the rise all over the world, including in Egypt (particularly untreated wastewater). The purpose of this study is to see if irrigation with untreated industrial wastewater in natural fields can cause Abelmoschus esculentus Moench. (okra plant) to accumulate and translocate eight trace metals (lead: Pb, cadmium: Cd, chromium: Cr, copper: Cu, iron: Fe, manganese: Mn, nickel: Ni, and zinc: Zn) in its different tissues. It was extended to look at the effects of wastewater irrigation on the farmed okra plants' growth characteristics, nutrients, colors, and organic content. Two studied sites at South of Cairo have been investigated: the first site (29°42'31.17" N and 31°15'11.56" E) represented by five cultivated fields irrigated with Nile water (control) and the second site (29°42'37.87" N and 31°17'14.53" E) fields irrigated with effluent received untreated industrial wastewater. Three composite soil and irrigated water samples were collected from each site. Because of wastewater irrigation, soil and plant nutrients (nitrogen, potassium, and phosphorus) decreased significantly (at P < 0.01), whereas trace metals increased significantly (at P < 0.01 and P < 0.05) for soil and plant samples irrigated with untreated wastewater. Due to irrigation with untreated wastewater, there was also a significant decrease in okra growth metrics (at P < 0.05) and leaves photosynthetic pigments: chlorophyll a and b, and carotenoids (at P < 0.01 and P < 0.05). In the plant's fruits (edible section) watered with wastewater, iron was the most abundant metal. Besides, Cd, Cu, Fe, Mn, Ni, and Zn concentrations were also in the phytotoxic range (42.57, 140.67, 2756.67, 1293.33, 1326.67, and 877.83 mg kg-1, respectively). All trace elements examined accumulate in the roots of wastewater irrigated okra (Bioaccumulation factor > 1). Okra plants, on the other hand, did not have an accumulated trace metals strategy in their shoots since the translocation factor was less than one. Because of substantial trace metal accumulation in their edible sections, the scientists advised against eating okra plants grown in fields watered with untreated wastewater.


Subject(s)
Abelmoschus , Metals, Heavy , Soil Pollutants , Chlorophyll A , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Wastewater/analysis
11.
PLoS One ; 16(12): e0255896, 2021.
Article in English | MEDLINE | ID: mdl-34898627

ABSTRACT

Wheat (Triticum aestivum L.) is one of the most important crops in the world, but the yield and quality of wheat are highly susceptible to heat stress, especially during the grain-filling stage. Therefore, it is crucial to select high-yield and high-temperature-resistant varieties for food cultivation. There is a positive correlation between the yield and photosynthetic rate of wheat during the entire grain-filling stage, but few studies have shown that lines with high photosynthetic rates can maintain higher thermotolerance at the same time. In this study, two pairs of wheat near isogenic lines (NILs) with different photosynthetic rates were used for all experiments. Our results indicated that under heat stress, lines with a high photosynthetic rate could maintain the activities of photosystem II (PSII) and key Calvin cycle enzymes in addition to their higher photosynthetic rates. The protein levels of D1 and HSP70 were significantly increased in the highly photosynthetic lines, which contributed to maintaining high photosynthetic rates and ensuring the stability of the Calvin cycle under heat stress. Furthermore, we found that lines with a high photosynthetic rate could maintain high antioxidant enzyme activity to scavenge reactive oxygen species (ROS) and reduce ROS accumulation better than lines with a low photosynthetic rate under high-temperature stress. These findings suggest that lines with high photosynthetic rates can maintain a higher photosynthetic rate despite heat stress and are more thermotolerant than lines with low photosynthetic rates.


Subject(s)
Heat-Shock Response , Photosynthesis , Plant Proteins/metabolism , Thermotolerance , Triticum/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Species Specificity , Triticum/genetics
12.
PLoS One ; 16(6): e0252229, 2021.
Article in English | MEDLINE | ID: mdl-34086714

ABSTRACT

The aim of the present investigation was to determine the concentration of heavy metals in the different organs of Pisum sativum L. (garden pea) grown in contaminated soils in comparison to nonpolluted soils in the South Cairo and Giza provinces, Egypt, and their effect on consumers' health. To collect soil and plant samples from two nonpolluted and two polluted farms, five quadrats, each of 1 m2, were collected per each farm and used for growth measurement and chemical analysis. The daily intake of metals (DIM) and its associated health risks (health risk index (HRI) were also assessed. The investigated heavy metals were cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), iron (Fe), manganese (Mn), zinc (Zn), silver (Ag), cobalt (Co) and vanadium (V). Significant differences in soil heavy metals, except As, between nonpolluted and polluted sites were recorded. Fresh and dry phytomass, photosynthetic pigments, fruit production, and organic and inorganic nutrients were reduced in the polluted sites, where there was a high concentration of heavy metals in the fruit. The bioaccumulation factor for all studied heavy metals exceeded 1 in the polluted sites and only Pb, Cu and Mn exceeded 1 in the nonpolluted sites. Except for Fe, the DIM of the studied heavy metals in both sites did not exceed 1 in either children or adults. However, the HRI of Pb, Cd, Fe, and Mn in the polluted plants and Pb in the nonpolluted ones exceeded 1, indicating significant potential health risks to consumers. The authors recommend not to eat garden peas grown in the polluted sites, and farmers should carefully grow heavy metals non-accumulating food crops or non-edible plants for other purposes such as animal forages.


Subject(s)
Metals, Heavy/adverse effects , Pisum sativum/drug effects , Soil Pollutants/adverse effects , Soil/chemistry , Bioaccumulation/drug effects , Crops, Agricultural/drug effects , Egypt , Environmental Monitoring/methods , Environmental Pollution/adverse effects , Fruit/drug effects , Health , Humans , Risk
13.
Saudi J Biol Sci ; 28(6): 3374-3383, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34121875

ABSTRACT

Saudi Arabia has no permanent lakes or rivers but has wet meadows, which are desert wetlands temporarily formed due to the seasonal rainfall. This work investigates the environmental variables' impact on the vegetation pattern in the desert-wetland ecosystem in Taif highlands. Forty-one stands were randomly selected representing three main habitats (wet meadows, slopes, and terraces) to study their floristic features and vegetation analysis. A total of 142 species were recorded belonging to 111 genera and 45 families in the desert wetlands of Taif Province. About 64.1% were natural plants, while 25.4% were segetal weeds, 7.7% were aquatic plants, and 2.8% were plants that escaped from cultivation. Therophytes dominated over the other life forms, and mono-regional taxa were the dominant chorotype. Multivariate analysis of the recorded plants produced eight vegetation groups; four of them (A: Potamogeton nodosus-Nasturtium officinale, B: Lemna gibba-Leptochloa fusca, C: Typha domingensis- Xanthium strumarium and D: Conyza stricta- Cyperus longus) represented the wet meadows, while two (E: Acacia gerrardii- Commicarpus plumbagineus and H: Osteospermum vaillantii- Eragrostis Pilosa) for slopes and other two (F: Argemone ochroleuca-Cyperus rotundus and G: Pulicaria undulata- Solanum incanum) for the desert terraces. The vegetation zonation was clear, which started from real aquatic species in the wet meadows passing through mixed vegetation in the slopes and ended with proper xerophytic vegetation in the terraces. Conyza stricta- Cyperus longus community had the highest species diversity, while that of Potamogeton nodosus-Nasturtium officinale had the lowest. The principal component analysis indicated that HCO3, NO3, Mg, Cl, Ca, and pH values were the most effective soil variable. The presence of several segetal weeds suggests the alteration of the natural status of the desert-wetland ecosystem, and thus the conservation of these natural habitats becomes urgent.

14.
Saudi J Biol Sci ; 28(4): 2438-2446, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33935569

ABSTRACT

The current work investigates the capacity of the water primrose (Ludwigia stolinefera) to sequester inorganic and organic nutrients in its biomass to restore eutrophic wetlands, besides its nutritive quality as fodder for animals. The nutrient elements and nutritive value of the water primrose were assessed seasonally in polluted and unpolluted watercourses. The water primrose plants' highest biomass was attained during summer; then, it was significantly reduced till it reached its lowest value during winter. In the polluted canal, the plant root and shoot accumulated higher contents of all nutrient elements (except Na and Mg) rather than in the unpolluted Nile. They accumulated most investigated nutrients in the growing season during summer. The shoots accumulated higher contents of N, P, Ca, and Mg than the root, which accumulated higher concentrations of Na and K. Therefore, summer season is the ideal time to harvest water primrose for removing the maximum nutrients for restoring eutrophic watercourses. The aboveground tissues had the highest values of ether extract (EE) during spring and the highest crude fibers (CF) and total proteins (TP) during summer. In contrast, the belowground tissues had the lowest EE, CF, and TP during winter. In spring, autumn, and winter seasons, the protein content in the grazeable parts (shoots) of the water primrose was within the range, while in summer, it was higher than the minimum requirement for the maintenance of animals. There was a decrease in crude fibers and total proteins, while an increase in soluble carbohydrates content in the below- and above-ground tissues of water primrose under pollution stress. The total protein, lipids, and crude fibers of the aboveground parts of water primrose support this plant as a rough forage.

15.
Environ Sci Pollut Res Int ; 28(28): 37158-37171, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33712952

ABSTRACT

Heavy metals are well known for their toxicity and become significant environmental pollution with a continually rising technology and public outcry to ensure the safest and healthiest environment. The present study aims to investigate the uptake capability of heavy metals and its impact on the growth dynamics of Ricinus communis L. (castor bean), along various habitats in Qalyubia Province, Egypt. Three composite plants and soil samples were collected from four different habitats: urban (residential area), canal banks, field edges, and drain banks. The samples were analyzed for nutrients and heavy metals. At the same time, forty quadrats (5 × 5 m) were selected to represent the micro-variations of castor bean in the selected habitats to determine its growth criteria and normalized vegetation index (NDVI). The lowest size index, volume, and number of leaves of castor bean were recorded along canal banks and they were characterized by high soil heavy metal concentration, especially Zn, Cu, and Ni, while the highest values were recorded along field edges with lower heavy metal concentration. Moreover, the NDVI indicated that castor bean from most studied habitats, except field edges, was healthy population. This study revealed that the leaves collected from all habitats were considered to be toxic with Cu. The bioconcentration factor (BF) of the investigated heavy metals was greater than 1. The BF order for heavy metals uptake by castor bean leaves was Fe > Ni > Mn > Cu > Zn. Consequently, the species selected in the present study can be used as a biomonitor of these heavy metal polluted soils. Moreover, it could be used as a phytoremediator, taken into consideration its use in all medicinal purposes.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Ecosystem , Egypt , Metals, Heavy/analysis , Ricinus , Soil , Soil Pollutants/analysis
16.
Bull Environ Contam Toxicol ; 106(3): 516-527, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33547904

ABSTRACT

In the current work, we investigated the concentration of Ni and Pb in different organs of Phragmites australis to evaluate its potential application as a phytoremediator to remove these two metals from contaminated water and sediment in Lake Burullus (a Ramsar site in Egypt). Above- and below-ground biomass of P. australis, water and sediment were sampled monthly for 1 year at six sites of Lake Burullus (three sites represent each of the northern and southern parts of the lake) using six randomly distributed quadrats (each of 0.5 × 0.5 m) at each sampling site. Significant variation was detected for Ni and Pb concentrations in the sediments and waters between the northern and southern sites of the lake. The biomass of P. australis in the southern sites was greater than that in the northern sites; in addition, the above-ground biomass was higher than the below-ground biomass. The above-ground organs accumulated higher concentrations of Ni and Pb than the below-ground organs. The Ni and Pb standing stocks data indicated that the organs of P. australis extracted higher amounts of Ni and Pb per its area from the southern rather than the northern sites. In the current study, the Ni and Pb above-ground standing stocks increased from the early growing season (February) and reached its peak during August and then decreased. The highest monthly Ni and Pb standing stock (18.2 and 18.4 g m- 2, respectively) was recorded in the above-ground organs of plants in the southern sites in August. The bioaccumulation factor of Ni was 157.6 and 153.4 in the northern and southern sites, respectively, whereas that of Pb was 175.3 and 158.3. The translocation factor of Ni and Pb from the below- to above-ground organs was generally > 1. Thus, this reed species is a potential candidate for Ni and Pb phytoextraction. Based on our results, P. australis could be used for the extraction of Ni and Pb to reduce the pollution in Lake Burullus, if the above-ground biomass is harvested at its maximum value in August, as was the case regarding the maximum standing stock of Ni and Pb.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Biodegradation, Environmental , Egypt , Environmental Monitoring , Geologic Sediments , Lakes , Lead , Metals, Heavy/analysis , Water , Water Pollutants, Chemical/analysis
17.
Environ Sci Pollut Res Int ; 28(18): 23005-23016, 2021 May.
Article in English | MEDLINE | ID: mdl-33438123

ABSTRACT

Many macrophytes have heavy metal phytoremediation potential from contaminated watercourses. Therefore, the present study investigated the seasonal potential of the sedge plant Cyperus alopecuroides to remediate heavy metals from contaminated water bodies. Water, sediment, and plant samples were collected from four contaminated watercourses and the uncontaminated Nile River. Summer was the blooming season of C. alopecuroides with the highest shoot density, leaf size, fresh production, and dry biomass, while winter represented the lowest growth season. The photosynthetic pigments were distinctly decreased in plants growing in contaminated compared to the uncontaminated sites. Plant roots accumulated concentrations of all measured heavy metals, except Ni, Cu, Zn, and Pb, more significant than the shoot. The maximum concentrations of Al, Ni, and Pb were recorded during spring, while the highest Cd, Cr, Fe, and Mn were recorded during summer. The bioconcentration factor (BCF) of all investigated metals (except Al) was > 1, while the translocation factor (TF) of all elements (except Pb) was ˂ 1. These results indicated the capability of C. alopecuroides for metal phytostabilization and considered the target species a powerful phytoremediator for monitoring water pollution in contaminated wetlands. In this context, the above- and belowground parts of C. alopecuroides should be harvested in summer for efficient phytoremediation.


Subject(s)
Cyperus , Metals, Heavy , Water Pollutants, Chemical , Biodegradation, Environmental , Egypt , Environmental Monitoring , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollution , Wetlands
18.
Int J Phytoremediation ; 23(6): 641-651, 2021.
Article in English | MEDLINE | ID: mdl-33232173

ABSTRACT

In the present study, we assessed seasonal variation in the accumulation potential of wild mint (Mentha longifolia) to heavy metals as well as the chemical composition and antioxidant activity of the essential oil of mint in polluted and unpolluted watercourses. The results indicated that the wild mint showed seasonal fluctuations in accumulation potential for heavy metals proved by bioaccumulation factor (BF) and translocation factor (TF). The all measured heavy metals, except Pb were retained in the underground parts. Summer plants accumulated the highest concentrations of Al, Cd, Cr and Fe in their root, while the lowest concentration of Ni in their shoot. The bioaccumulation factor for Cd, Cu, Mn, Ni, Zn and Co was greater than one, while the translocation factor of the investigated metals (except Pb) did not exceed one, indicating the potential of wild mint for phytostabilization of these metals in contaminated wetlands. The yield and composition of mint essential oil (MEO) were affected by harvesting season and heavy metals pollution. GC/MS showed that isomenthone, cis-piperitenone oxide, menthone and pulegone, were the main oil constituents. Mint essential oil show promising antioxidant activity by 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay under pollution stress. The maximum reducing power of MEO were obtained during autumn and summer seasons (polluted canals).In conclusion, summer is the ideal season for harvesting wild mint plants for the maximum plant biomass, oil yield, high radical scavenging activity of MEO and to monitor pollution in contaminated wetlands.


Subject(s)
Mentha , Metals, Heavy , Oils, Volatile , Antioxidants , Biodegradation, Environmental , Egypt , Environmental Monitoring , Metals, Heavy/analysis
19.
Plants (Basel) ; 9(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019617

ABSTRACT

The application of sewage sludge (SS) in agriculture is an alternative disposal method for wastewater recycling and soil fertilization. This study evaluated heavy metal bioaccumulation, growth, and yield of Pisum sativum (pea) grown in agricultural soil amended with SS at rates of 0, 10, 20, 30, and 40 g/kg. The results show that root, shoot, pod length, biomass, and number of leaves and pods increased with SS amendments of 10 and 20 g/kg, while rates declined at 30 and 40 g/kg. SS had greater salinity and organic content than the soil. Heavy metals in the postharvest soil samples increased for all SS application rates except Fe and Mo. The significant increase in Cd content started at the lowest amendment rate 10 g/kg; for Co, Mn, and Pb, the significant increase was detected at the highest amendment rate (40 g/kg). Generally, all heavy metals increased significantly in portions of P. sativum except Cd in the shoot. At an amendment rate of 10 g/kg, Co in the shoot and root, Cr in the fruit, Cu in the root, Fe in the fruit, Mn in the shoot and fruit, Mo in the fruit, Pb in the shoot, and Zn in the fruit were elevated significantly. In contrast, the concentrations of Cd in the fruit, Cr in the root, Cu in the shoot, Fe in the shoot and root, Ni in the fruit and root, Pb in the fruit and root, and Zn in the root significantly increased only at the highest rate of 40 g/kg. The highest regression R2 was 0.927 for Mn in pods and the lowest was 0.154 for Cd in shoots. Bioaccumulation and translocation factors were > 1 for Mo and the bioaccumulation of Pb was >1. SS could be used for pea fertilization but only at rates below 20 g/kg to avoid environmental and health hazards.

20.
Int J Phytoremediation ; 22(10): 1000-1008, 2020.
Article in English | MEDLINE | ID: mdl-32062980

ABSTRACT

Prediction of heavy-metal concentration in the edible parts of economic crops, based on their concentration in soil and other environmental factors, is urgently required for human risk assessment. The present investigation aimed to develop regression models for predicting heavy-metal concentration in wheat plants via their contents in sewage sludge amended soil, organic matter (OM) content and soil pH. The concentration of heavy metals in the plant tissues reflected its concentration in the soil with high Fe followed by Al, Mn, Cr, Zn, Ni, Co, Cu, and Pb. Soil OM content had a significant positive correlation with all investigated heavy-metal concentrations in the different tissues of wheat plants, while soil pH was negatively significant with most heavy metals except spike Pb and grain Cr. The bio-concentration factor of Al, Cu, and Zn from soil to wheat root was >1, while that of shoot, spikes, and grains was <1 for all heavy metals. Significantly valid regression models were developed with fluctuated coefficient of determination (R2), high model efficiency (ME) values and low mean normalized average error (MNAE). The significant positive correlations between the concentration of some heavy metals in the soil and the same in wheat tissues indicate the potential of this plant as a biomonitor for these metals in contaminated soils. The significant correlations between heavy-metal concentrations in soil and its properties (pH and OM) with metal concentrations in wheat plants support the prediction model as an appropriate option. This study recommends the use of models with R2 greater than 50% and recommend other researchers to use our models according to their own specific conditions.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Environmental Monitoring , Humans , Sewage/analysis , Soil , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...