Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1087397, 2023.
Article in English | MEDLINE | ID: mdl-37020549

ABSTRACT

The goal of the current study was to investigate the hormonal modulatory efficiency of hesperidin, through its regulatory potential of immunological, inflammatory, and/or antioxidant changes in on hyperthyroidism modeled adult female albino rats. Both normal and hyperthyroidism modeled rats (140-160g) were randomly divided into four groups (10 animals each) as follows: 1) healthy animals were daily ingested with saline for six weeks, and served as control group, 2) healthy animals were intraperitoneally injected with hesperidin (50 mg/kg/day) for a similar period, 3) hyperthyroidism-modeled animals without any treatment acted as positive control, and 4) hyperthyroidism-modeled animals were treated intraperitoneally with hesperidin for a similar period. The findings showed that hesperidin significantly modulated hyperthyroidism deteriorations, this was evidenced by a remarkable decline in serum T4, FT4, T3, FT3, TNF-α, IL1ß-, IL4-, IL-6, and IL-10 levels, with a minor increase in TSH and significant raise in CD4+ level. Similarly, valuable improvement was observed in the oxidative status; serum SOD, GPx, CAT, and GSH levels were dramatically enhanced, associated with remarkable drop in MDA and NO levels. Also, hesperidin demonstrated nephro-hepatoprotective and anti-atherogenic potential, this was achieved from the notable reduction in ALAT and ASAT activities as well as urea, creatinine, cholesterol, and triglyceride close to the corresponding values of healthy group. These findings were supported by histological and immunohistochemical ones that showed a notable decrease in the expression of the calcitonin antibody. In conclusion, hesperidin possesses anti-hyperthyroidism, immunoinflammatory regulatory, and antioxidant activities that evidenced from the improvement of physio-architecture of the thyroid gland, reduction of inflammation and restoration of the impaired oxidative stress. This effect might be mechanized through immunological, inflammatory, apoptotic, and/or antioxidant modulatory pathways.


Subject(s)
Hesperidin , Hyperthyroidism , Animals , Female , Antioxidants/pharmacology , Hesperidin/pharmacology , Oxidative Stress , Superoxide Dismutase/metabolism , Rats
2.
Pak J Biol Sci ; 25(3): 270-281, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35234018

ABSTRACT

<b>Background and Objective:</b> The use of Doxorubicin<sup>®</sup> (Doxo) in the treatment of different tumours is restricted due to its cardiotoxicity. The objective of this study was to determine the protective effect of<i> Balanites aegyptiaca</i> extract against cardiotoxicity induced by Doxorubicin<sup>®</sup> in male rats. <b>Materials and Methods:</b> Adult male rats (140-160) were parted into 6 groups (10 animals each) as follows: Group (1) Normal rats the control, group (2) Rats were administered BAE (200 mg kg<sup>1</sup>) orally for 4 weeks, group (3) Rats were treated IP with the anticancer drug (Doxorubicin<sup>®</sup>) at the dose of (0.5 mg kg<sup>1</sup>) for 4 weeks, group (4) Administrated orally with BAE in combination with Doxo injection for 4 weeks, group (5) Rats orally with BAE before intoxication with Doxo for 4 weeks and finally group (6) Animals post-administration of BAE for 4 weeks after intoxication with Doxo. After 4 weeks of injections. <b>Results:</b> Revealed that BAE succeeded to decline the Doxorubicin cardiotoxicity, this was evidenced by the significant reduction of serum LDH, CK-MB, total cholesterol, triglycerides, HDL, TNF-α, IL-1ß and IL-6 as well as cardiac MDA and nitric oxide levels coupled with marked improvement in serum LDL, PON1 as well as cardiac GSH, SOD and CAT. Moreover, the BAE induced prominent regeneration of the cardiac muscle. <b>Conclusion:</b> <i>Balanites aegyptiaca</i> extract may be a promising cardio-protector against Doxorubicin<sup>®</sup> toxicity mediated through their antioxidant and radical scavenging activities.


Subject(s)
Antioxidants , Balanites , Animals , Antioxidants/pharmacology , Disease Models, Animal , Doxorubicin/adverse effects , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
3.
Pak J Biol Sci ; 24(8): 830-839, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486350

ABSTRACT

<b>Background and Objective:</b> Oxaliplatin<sup>®</sup> is an antineoplastic platinum-based compound; nephrotoxicity is one of its most serious side effects. This study aimed to explore the nephroprotective potential of Costus Ethanolic Extract (CEE) against Oxaliplatin<sup>®</sup>-induced nephrotoxicity. <b>Materials and Methods:</b> Adult male Wistar rats, weighting 140-160 g, were randomly divided into four groups: (1) Normal rats, (2) Rats ingested with CEE (67.08 mg kg<sup>1</sup> day<sup>1</sup>), (3) Rats injected (ip) with Oxaliplatin<sup>®</sup> (10 mg kg<sup>1</sup> week<sup>1</sup>) and (4) rats treated with CEE in combination Oxaliplatin<sup>®</sup> injection. <b>Results:</b> After six weeks of treatments, the results revealed that CEE ingestion along with Oxaliplatin<sup>®</sup> injection markedly minimized the Oxaliplatin<sup>®</sup>-induced renal deterioration; this was evidenced by the significant reduction in serum urea, creatinine, uric acid, Tumor Necrosis Factor Alpha (TNF-α), Interleukin 1Beta (IL<sup>1</sup>ß) and Sodium ion (Na<sup>+</sup>) levels as well as kidney Malondialdehyde (MDA), Nitric Oxide (NO) and DNA fragmentation values. Controversially, a marked rise in serum Calcium, Potassium Ion (K<sup>+</sup>) and Cluster of Differentiation 4 (CD4) levels besides renal Glutathione (GSH), Catalase (CAT) and Superoxide Dismutase (SOD) values. Similarly, the histopathological findings confirmed the biochemical ones as the CEE restored the Oxaliplatin<sup>®</sup>-induced histological degenerations. <b>Conclusion:</b> In conclusion, CEE exhibited nephron-protection efficiency against Oxaliplatin<sup>®</sup>-induced nephrotoxicity; this promising effect may be achieved through the antioxidant and radical scavenging activities of its constituents.


Subject(s)
Costus/metabolism , Ethanol/chemistry , Oxaliplatin/pharmacology , Plant Extracts/chemistry , Animals , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Creatinine/blood , DNA Fragmentation , Free Radical Scavengers , Glutathione/metabolism , Kidney/drug effects , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Phenol/chemistry , Picrates/chemistry , Rats , Rats, Wistar , Saussurea/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...