Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Foods ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397483

ABSTRACT

The global food systems face significant challenges driven by population growth, climate change, geopolitical conflicts, crises, and evolving consumer preferences. Intending to address these challenges, optimizing food production, adopting sustainable practices, and developing technological advancements are essential while ensuring the safety and public acceptance of innovations. This review explores the complex aspects of the future of food, encompassing sustainable food production, food security, climate-resilient and digitalized food supply chain, alternative protein sources, food processing, and food technology, the impact of biotechnology, cultural diversity and culinary trends, consumer health and personalized nutrition, and food production within the circular bioeconomy. The article offers a holistic perspective on the evolving food industry characterized by innovation, adaptability, and a shared commitment to global food system resilience. Achieving sustainable, nutritious, and environmentally friendly food production in the future involves comprehensive changes in various aspects of the food supply chain, including innovative farming practices, evolving food processing technologies, and Industry 4.0 applications, as well as approaches that redefine how we consume food.

2.
Heliyon ; 10(3): e25261, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327467

ABSTRACT

Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.

3.
An Acad Bras Cienc ; 95(3): e20221023, 2023.
Article in English | MEDLINE | ID: mdl-38055498

ABSTRACT

In the current study, the solubility and permeability of Osthole-loaded microemulsion were enhanced, which increased bioavailability. In addition, Carbomer 940 was added for prolonged drug delivery. The microemulsion was prepared after the screening of Kukui oil, Labrasol (surfactant), and transcutol-P (co-surfactant). Pseudoternary phase diagrams were employed to find the microemulsion region. Box Behnken Design (BBD) was employed for optimizing microemulsions. Variables were related and compared using mathematical equations and response surface plots (RSP). MEBG was then compared with control gel on the basis of stability studies, drug permeation, skin irritation studies, and anti-inflammatory studies. Microemulsion preparations depicted a pH of 5.27 - 5.80, a conductivity of 139 - 185 µS/cm, a poly-dispersity index of 0.116 - 0.388, a refractive index of 1.330 - 1.427, an average droplet size of 64 - 89 nm, homogeneity, spherical shape, viscosity 52 - 185 cP. Predicted values of Optimized microemulsions showed more reasonable agreement than experimental values. The microemulsion was stable and non-irritating on Rabbit skin. MEBG showed a significant difference from control gel for percent edema inhibition from the standard. The permeation enhancing capability of MEBG using a suitable viscosity fabricates it promising carrier for transdermal delivery of Osthole.


Subject(s)
Skin Absorption , Skin , Animals , Rabbits , Administration, Cutaneous , Surface-Active Agents/metabolism , Emulsions/metabolism
4.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37477284

ABSTRACT

Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.

5.
Plant Physiol Biochem ; 200: 107764, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245494

ABSTRACT

Nowadays, the development of suitable strategies for the management and valorization of agri-food products is one of the most important challenges worldwide. In this context, the current research study aimed to explore a valorization strategy for different varieties (Khalas, Jabri, Lulu, Booman, and Sayer) of low-grade date fruit by extracting polyphenolic compounds and investigating their health-promoting bioactive properties. The generated extracts were comparatively analyzed for their phenolic contents, antioxidant, anti-inflammatory, anti-hemolytic, and enzyme inhibitory activities upon in vitro simulated gastrointestinal digestion (SGID). The total phenolic contents (TPC) ranged from 217.3 to 1846.9 mg GAE/100 g fresh weight. After complete SGID, the TPC remarkably increased from 570.8 mg GAE/100 g fresh weight (undigested), reaching the highest value of 1606.3 mg GAE/100 g fresh weight with the Khalas cultivar. Overall, gastric and complete-SGID-treated extracts exhibited higher antioxidant activities, compared to the undigested extracts for the five selected date varieties. Similarly, the gastric and complete SGID promoted the release of bioactive components endowed with significantly higher inhibition levels towards digestive enzymes related to diabetes. Moreover, extracts from all varieties revealed an increase in the inhibition of lipidemic-related enzymatic markers and anti-inflammatory activities when subjected to the gastric digestion phase, which decreased after complete SGID. Principal component analysis (PCA) suggested that higher bioactive properties were influenced by the TPC present in the samples. Overall, low-quality dates could be considered as a potential source of bioactive polyphenols with interesting nutraceutical properties, released upon their transit through the gastrointestinal tract.


Subject(s)
Antioxidants , Phoeniceae , Antioxidants/pharmacology , Antioxidants/analysis , Fruit/chemistry , Phenols/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Digestion
6.
Foods ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36832796

ABSTRACT

Over the last few years, the world has been facing dramatic changes due to a condensed period of multiple crises, including climate change, the COVID-19 pandemic, and the Russian-Ukrainian war. Although different, these consecutive crises share common characteristics (e.g., systemic shocks and non-stationary nature) and impacts (e.g., disruption of markets and supply chains), questioning food safety, security, and sustainability. The current article analyses the effects of the noted crises in the food sector before proposing target mitigation measures to address the different challenges. The goal is to transform the food systems to increase their resilience and sustainability. This goal can only be achieved if all relevant actors within the supply chain (e.g., governments, companies, distributors, farmers, etc.) play their role by designing and implementing target interventions and policies. In addition, the transformation of the food sector should be proactive concerning food safety, circular (valorizing several bioresources under the principles of climate neutral economy and blue bioeconomy), digital (based on Industry 4.0 applications), and inclusive (ensuring that all citizens are actively engaged). Food production modernization (e.g., by implementing emerging technologies) and developing shorter and more domestic supply chains are also critical to achieving food resilience and security.

7.
ACS Omega ; 8(1): 1486-1495, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643507

ABSTRACT

This study examined the amino-acid profile, secondary structure, and physicochemical and functional properties of proteins isolated from Anatolian chickpea landraces. Secondary objective of the study was to determine whether a relationship exists between the amino-acid composition and physicochemical and functional properties. Aspartic acid and glutamic acid were the dominant amino acids, while the isolates were deficient in methionine. Secondary structures were determined by Fourier transform infrared spectroscopy, where the ß-sheet was shown to be dominant. The denaturation temperature of the isolates was between 87 and 145 °C, and the highest net surface charge (≃28.6 mV) and solubility (∼95.0%) were observed at pH 9.0-10.0. The isolates' water-holding capacity varied between 2.1 and 2.7 g water/g protein, whereas their oil-holding capacity ranged between 3.4 and 4.4 g oil/g protein. Emulsion capacity, emulsifying activity, and the stability indices of isolates were found to be between 401.2 and 469.1 g oil/g protein, 14.5 and 25.7 m2/g, and 45.7 and 146.9 min, respectively. Isolates of Hisar and Erzincan chickpeas exhibited good emulsifying properties. The Yasa isolate had a relatively high hydrophobic amino-acid content and delivered the best gelation performance. Overall, significant differences in the characteristics of proteins were observed among the different chickpea landraces studied.

8.
Crit Rev Food Sci Nutr ; 63(23): 6547-6563, 2023.
Article in English | MEDLINE | ID: mdl-35114860

ABSTRACT

Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and other technological advances (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work. The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move toward Industry 5.0.


Subject(s)
Artificial Intelligence , Refuse Disposal , Humans , Food , Food Industry , Internet
9.
J Pharm Biomed Anal ; 223: 115113, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36327579

ABSTRACT

The present study aims to investigate the digestive process (gastric and intestinal phases) effects on the survivability of total and individual phenolic compounds, and the in vitro health-related bioactive properties of four high-quality and commonly consumed dates (Phoenix dactylifera) varieties (Safawi, Khalas, Khudri, and Booman). Phenolic compounds were analyzed by HPLC-UV (at 275 nm) and a higher amount of phenolics were identified in Khalas and Booman intestinal digested extracts, compared to the other date varieties-based extracts, which corroborates with the total phenolic contents in those samples, with respective values of 186.5 and 358.14 mg GAE/100 g. Considering their bioactive potentialities, the highest DPPH radical scavenging activities, of around 320 TEAC µg/mL, were observed with Khalas and Khudri gastric extracts. In contrast, Khalas intestinal extract displayed the highest ABTS radical scavenging potential of 969 TEAC µg/mL. Moreover, the Safawi intestinal extract, along with Khalas and Booman gastric extracts, showed the highest increase in the α-glucosidase inhibition activity, compared to the other date varieties-based extracts. Safawi and Khalas intestinal extracts displayed the highest DPP-IV inhibition activities (IC50 of 2.85 µg/mL). Additionally, regarding the pancreatic lipase and cholesterol esterase inhibition, Khudri and Khalas varieties after intestinal digestion demonstrated the highest activities. These results suggested that the Khalas variety showed more potent bioactive properties than other date varieties, mainly related to the variations in the phenolic content between date varieties. Overall, this study provides additional insight into investigating these dates varieties upon their simulated gastro-intestinal digestion and exhibition of multifunctional bioactive properties.


Subject(s)
Phoeniceae , Phoeniceae/chemistry , Antioxidants/chemistry , Fruit/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Dietary Supplements , Digestion
10.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35930325

ABSTRACT

Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.

11.
J Food Biochem ; 46(10): e14369, 2022 10.
Article in English | MEDLINE | ID: mdl-35945661

ABSTRACT

Purified soya bean proteins (glycinin and conglycinin) are known to form amyloid-like aggregates in vitro at a higher temperature. Soya beans (chunks) are textured proteinaceous vegetables made from defatted soya flour by heating it above 100°C and extruding under high pressure. Therefore, it was assumed that subjecting the soya bean proteins to high temperatures raises the possibility of forming amyloids or amyloid-like protein aggregates. Hence, the present study aimed to examine the presence of amyloid-like protein aggregates in soya beans. The isolated protein aggregates from hydrated soya beans displayed typical characteristics of amyloids, such as the red shift in the absorption maximum (λmax ) of Congo red (CR), high Thioflavin T (ThT), and 8-Anilinonapthalene-1-sulfonate (ANS) binding, and fibrilar morphology. Furthermore, these aggregates were found to be stable against proteolytic hydrolysis, confirming the specific property of amyloids. The presence of amyloid-like structures in soya beans raises concerns about their implications for human nutrition and health. PRACTICAL APPLICATIONS: Protein aggregation has usually been considered detrimental. The traditional food-processing conditions, such as thermal processing, are associated with protein denaturation and aggregation. The formation of ordered protein aggregates with extensive ß-sheet are progressively evident in various protein-rich foods known as amyloid, which expands food safety concerns. Instead, it is also associated with poor nutritional characteristics. The present study concerns the presence of amyloid-like protein aggregates in widely consumed native soya beans, which are manufactured by extensive heat treatment of defatted soy flour. Although there is no indication of their toxicity, these aggregates are found to be proteolytically resistant. The seminal findings in this manuscript suggest that it is time to adapt innovative food processing and supplementation of bioactive molecules that can prevent the formation of such protein aggregates and help maximize the utilization of protein-based nutritional values.


Subject(s)
Amyloidogenic Proteins , Fabaceae , Amyloid/chemistry , Amyloid/metabolism , Congo Red/metabolism , Fabaceae/metabolism , Hot Temperature , Humans , Hydrogen-Ion Concentration , Protein Aggregates , Glycine max/metabolism
12.
Front Microbiol ; 13: 875164, 2022.
Article in English | MEDLINE | ID: mdl-35814679

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.

13.
Pharmaceutics ; 14(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35890262

ABSTRACT

Gel beads are formed when alginate acid reacts with divalent cations, particularly Ca2+. As a result of this feature, it is one of the best materials for making gel beads. Furthermore, it swells only slightly at acidic pH, resulting in stable alginate acid beads, but swells and dissolves rapidly at higher pH values, leading to pH-responsive release. Our current study aimed to embed folate-modified chitosan 5FU nanoparticles (FA-CS-5FU-NPs) into calcium alginate beads for colon-targeted delivery. Calcium alginate beads were developed successfully. Based on the method of drying, two types of beads were obtained: freeze-dried folate-modified chitosan 5FU nanoparticles-embedded beads (FA-CS-5FU-NP-Bf) and oven-dried folate-modified chitosan 5FU nanoparticles-embedded beads (FA-CS-5FU-NP-Bo). The size of (FA-CS-5FU-NP-Bf) was significantly larger than (FA-CS-5FU-NP-Bo). Swelling index (SI), erosion index (EI), and water-uptake index (WUI) of (FA-CS-5FU-NP-Bf) beads were significantly higher than FA-CS-5FU-NP-Bo beads at simulated intestinal pH. An insignificant difference was observed in the release rate of 5FU between (FA-CS-5FU-NP-Bf) and FA-CS-5FU-NP-Bo. The release rate of FA-CS-5FU-NPs was significantly higher than FA-CS-5FU-NP-Bf and FA-CS-5FU-NP-Bo. Pharmacokinetic parameters of 5FU solution, FA-CS-5FU-NPs, and FA-CS-5FU-NP-Bo were analyzed. Solution of pure 5FU showed significantly higher Cmax and lower AUC, T1/2, and Vd than both FA-CS-5FU-NPs and FA-CS-5FU-NPs-Bo, suggesting that FA-CS-5FU-NPs and FA-CS-5FU-NPs-Bo have sustained-release behavior. Biodistribution studies also show that maximum drug amounts were found in the colon from nanoparticles-embedded beads. FA-CS-5FU-NPs-Bo avoid releasing drugs in the stomach and small intestine and make them available in the colon region in higher concentrations to target the colon region specifically.

14.
Pharmaceutics ; 14(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745871

ABSTRACT

The aim of this study was to improve the saturation solubility, dissolution profile and oral bioavailability of amiodarone hydrochloride (AMH), a highly lipophilic drug. Stabilizer (Pluronic F-127)-coated AMH nanocrystals (AMH-NCs) were developed by a combination of antisolvent precipitation and homogenization techniques. The optimized formulation comprised pluronic F-127 and AMH at the concentration of 4% and 2% w/v, respectively. The particle size (PS), zeta potential (ZP) and polydispersity index (PDI) of the optimized formulation was found to be 221 ± 1.2 nm, 35.3 mV and 0.333, respectively. The optimized formulation exhibited a rough surface morphology with particles in colloidal dimensions and a significant reduction in crystallinity of the drug. AMH-NCs showed a marked increase in the saturation solubility as well as rapid dissolution rate when compared with the AMH and marketed product. The stability study displayed that the formulation was stable for 3 months, with no significant change in the PS, ZP and PDI. The in vivo pharmacokinetic study demonstrated the ability of AMH-NCs to significantly (p < 0.05) improve the oral bioavailability (2.1-fold) of AMH in comparison with AMH solution, indicating that the production of AMH-NCs using a combination of antisolvent precipitation and homogenization techniques could enhance the bioavailability of the drug.

15.
Foods ; 11(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053973

ABSTRACT

This review article revises the sustainable practices and applications to valorize valuable components recovered from cereal processing by-products. After introducing cereal processing by-products, their healthy compounds, and corresponding functional properties, the article explores reutilization opportunities of by-products emphasizing specific sources (e.g., oat and wheat bran, distillers' dried grains, etc.) and the biorefinery approach. Proteins and soluble dietary fibers such as arabinoxylans are of particular interest due to their content in the cereal processing by-products and their easy extraction based on conventional technologies such as enzyme-assisted extraction and membrane filtration. Non-thermal technologies have also been suggested to improve sustainability recovery approaches. Finally, the article discusses the different applications for the recovered high-added value compounds that span across biotechnology, foods, and bakery products.

16.
Compr Rev Food Sci Food Saf ; 21(1): 46-105, 2022 01.
Article in English | MEDLINE | ID: mdl-34957673

ABSTRACT

Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.


Subject(s)
Anthocyanins , Vegetables , Edible Grain , Fruit , Plant Tubers
17.
J Food Sci Technol ; 59(7): 2913-2924, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34840348

ABSTRACT

Grape processing by-products (particularly grape pomace) are known to contain high amounts of phenolic compounds. To improve the extraction of phenols from this by-product, it is necessary to develop a method and set and model optimal conditions for their extraction. By applying the design of experiments (DoE) approach, optimal experimental factors of Ultrasound-assisted extraction (USAE) were determined to obtain grape pomace extracts with a satisfactory yield of phenols anthocyanins, as well as extracts with high antioxidant capacity using reagents approved in the food industry. Initial method optimization covered two experimental factors: solvent concentration and the weight ratio of the sample and solvent using fixed USAE conditions from literature. For the final method optimization, the three investigated experimental factors were: pH value, the temperature of extraction, and extraction time. The optimal experimental conditions for the development of the method were 55% ethanol, sample/solvent ratio 1:40, pH 4.5, T 55 °C, and 30 min. Depending on the primary goal of the extraction process (the antioxidant activity, total phenolic content, content of individual phenols, or content of individual anthocyanins), these parameters can easily be modified to obtain the desired recovery. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05317-9.

18.
Food Chem ; 373(Pt B): 131486, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34800818

ABSTRACT

Cottage cheese, extensively consumed worldwide, contains coagulated milk protein (casein), produced through boiling and acidification of milk. Casein forms amyloid or amyloid-like structures at high temperatures and low pH. Due to the similarities in the preparation of casein amyloids and cottage cheese, we hypothesized the presence of amyloid or amyloid-like protein aggregates in cottage cheese. To examine this hypothesis, cottage cheese was prepared from cow (Bos indicus) milk and isolated amyloids through a water extraction method. The isolated protein aggregates displayed typical characteristics of amyloids, such as a bathochromic shift in the wavelength of maximum absorption (λmax) of Congo red (CR), high thioflavin T (ThT) binding, increased surface hydrophobicity, and high ß-sheet structure. However, they did not show antibacterial activity and toxic properties against erythrocytes. Our study revealed that the heat-treatment and subsequent acidification during cottage cheese preparation lead to the formation of non-toxic amyloid-like aggregates.


Subject(s)
Cheese , Amyloidogenic Proteins , Animals , Caseins , Cattle , Female , Milk , Milk Proteins , Protein Aggregates
19.
Sci Total Environ ; 808: 152180, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34883168

ABSTRACT

The spread of the COVID-19 pandemic has generated a health crisis and repetitive lockdowns that disrupted different economic and societal segments. As the world has placed hope on the vaccination progress to bring back the socio-economic "normal," this article explores how the bioeconomy can enhance the resilience and sustainability of bio-based, food, and energy systems in the post-COVID-19 era. The proposed recovery approach integrates technological innovations, environment, ecosystem services, "biocities," food, rural economies, and tourism. The importance of integrating culture, arts, and the fashion industry as part of the recovery is underlined towards building a better bioeconomy that, together with environmental safeguards, promotes socio-cultural and economic innovations. This integration could be achieved supporting communities and stakeholders to diversify their activities by combining sustainable production with decarbonization, stimulating private investments in this direction and monitoring the resulting impact of mitigation measures. Food systems should become more resilient in order to allow adapting rapidly to severe crises and future shocks, while it is important to increase circularity towards the valorization of waste, the integration of different processes within the biorefinery concept and the production of bio-based products and biofuels.


Subject(s)
COVID-19 , Pandemics/economics , COVID-19/economics , Communicable Disease Control , Humans
20.
Foods ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681335

ABSTRACT

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10-10 to 1.55 × 10-10 m2·s-1 for water loss and from 0.72 × 10-10 to 0.62 × 10-10 m2·s-1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.

SELECTION OF CITATIONS
SEARCH DETAIL
...