Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35030253

ABSTRACT

Mansi Srivastava is a John L. Loeb Associate Professor of the Natural Sciences at Harvard University. This year, she was awarded the Elizabeth D. Hay New Investigator Award by the Society of Developmental Biology, which recognizes new group leaders who have performed outstanding research in developmental biology during the early stages of their independent career. Mansi's research focusses on investigating wound response and stem cell biology during regeneration in an evolutionary context. We talked to Mansi to discover how she feels about receiving this award, and about her career and her activities outside of the lab.


Subject(s)
Developmental Biology/history , Awards and Prizes , History, 20th Century , History, 21st Century
2.
Bioessays ; 42(10): e2000018, 2020 10.
Article in English | MEDLINE | ID: mdl-32761854

ABSTRACT

Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk.


Subject(s)
Centromere , Chromosome Segregation , Animals , Cell Cycle Proteins/genetics , Chromatids , Kinetochores , Meiosis/genetics , Mice
3.
Wellcome Open Res ; 4: 29, 2019.
Article in English | MEDLINE | ID: mdl-30906881

ABSTRACT

Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13 Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13 Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13 Δ cells.

4.
Dev Cell ; 49(4): 526-541.e5, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31031198

ABSTRACT

Meiosis produces gametes through a specialized, two-step cell division, which is highly error prone in humans. Reductional meiosis I, where maternal and paternal chromosomes (homologs) segregate, is followed by equational meiosis II, where sister chromatids separate. Uniquely during meiosis I, sister kinetochores are monooriented and pericentromeric cohesin is protected. Here, we demonstrate that these key adaptations for reductional chromosome segregation are achieved through separable control of multiple kinases by the meiosis-I-specific budding yeast Spo13 protein. Recruitment of Polo kinase to kinetochores directs monoorientation, while independently, cohesin protection is achieved by containing the effects of cohesin kinases. Therefore, reductional chromosome segregation, the defining feature of meiosis, is established by multifaceted kinase control by a master regulator. The recent identification of Spo13 orthologs, fission yeast Moa1 and mouse MEIKIN, suggests that kinase coordination by a meiosis I regulator may be a general feature in the establishment of reductional chromosome segregation.


Subject(s)
Chromosome Segregation/physiology , Kinetochores/physiology , Meiosis/physiology , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromatids/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/genetics , Kinetochores/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/physiology , Cohesins
5.
Genes Dev ; 28(12): 1291-309, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24939933

ABSTRACT

During mitosis and meiosis, sister chromatid cohesion resists the pulling forces of microtubules, enabling the generation of tension at kinetochores upon chromosome biorientation. How tension is read to signal the bioriented state remains unclear. Shugoshins form a pericentromeric platform that integrates multiple functions to ensure proper chromosome biorientation. Here we show that budding yeast shugoshin Sgo1 dissociates from the pericentromere reversibly in response to tension. The antagonistic activities of the kinetochore-associated Bub1 kinase and the Sgo1-bound phosphatase protein phosphatase 2A (PP2A)-Rts1 underlie a tension-dependent circuitry that enables Sgo1 removal upon sister kinetochore biorientation. Sgo1 dissociation from the pericentromere triggers dissociation of condensin and Aurora B from the centromere, thereby stabilizing the bioriented state. Conversely, forcing sister kinetochores to be under tension during meiosis I leads to premature Sgo1 removal and precocious loss of pericentromeric cohesion. Overall, we show that the pivotal role of shugoshin is to build a platform at the pericentromere that attracts activities that respond to the absence of tension between sister kinetochores. Disassembly of this platform in response to intersister kinetochore tension signals the bioriented state. Therefore, tension sensing by shugoshin is a central mechanism by which the bioriented state is read.


Subject(s)
Centromere/metabolism , Chromosome Segregation/physiology , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Aurora Kinase B/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Meiosis/physiology , Microtubules/metabolism , Mitosis/physiology , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Cohesins
6.
Curr Biol ; 23(7): 599-606, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23499533

ABSTRACT

Cohesin is a conserved ring-shaped multiprotein complex that participates in chromosome segregation, DNA repair, and transcriptional regulation [1, 2]. Cohesin loading onto chromosomes universally requires the Scc2/4 "loader" complex (also called NippedBL/Mau2), mutations in which cause the developmental disorder Cornelia de Lange syndrome in humans [1-9]. Cohesin is most concentrated in the pericentromere, the region surrounding the centromere [10-15]. Enriched pericentromeric cohesin requires the Ctf19 kinetochore subcomplex in budding yeast [16-18]. Here, we uncover the spatial and temporal determinants for Scc2/4 centromere association. We demonstrate that the critical role of the Ctf19 complex is to enable Scc2/4 association with centromeres, through which cohesin loads and spreads onto the adjacent pericentromere. We show that, unexpectedly, Scc2 association with centromeres depends on cohesin itself. The absence of the Scc1/Mcd1/Rad21 cohesin subunit precludes Scc2 association with centromeres from anaphase until late G1. Expression of SCC1 is both necessary and sufficient for the binding of cohesin to its loader, the association of Scc2 with centromeres, and cohesin loading. We propose that cohesin triggers its own loading by enabling Scc2/4 to connect with chromosomal landmarks, which at centromeres are specified by the Ctf19 complex. Overall, our findings provide a paradigm for the spatial and temporal control of cohesin loading.


Subject(s)
Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cytoskeletal Proteins/metabolism , Kinetochores/metabolism , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Blotting, Western , Chromatin Immunoprecipitation , DNA Primers/genetics , Flow Cytometry , Immunoprecipitation , Mass Spectrometry , Multiprotein Complexes/isolation & purification , Polymerase Chain Reaction , Yeasts , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...