Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 29364-29373, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38647175

ABSTRACT

Efficient separation of Kr from Kr/Xe mixtures is pivotal in nuclear waste management and dark matter research. Thus far, scientists have encountered a formidable challenge: the absence of a material with the ability to selectively adsorb Kr over Xe at room temperature. This study presents a groundbreaking transformation of the renowned metal-organic framework (MOF) CuBTC, previously acknowledged for its Xe adsorption affinity, into an unparalleled Kr-selective adsorbent. This achievement stems from an innovative densification approach involving systematic compression of the MOF, where the crystal size, interparticle interaction, defects, and evacuation conditions are synergistically modulated. The resultant densified CuBTC phase exhibits exceptional mechanical resilience, radiation tolerance, and notably an unprecedented selectivity for Kr over Xe at room temperature. Simulation and experimental kinetic diffusion studies confirm reduced gas diffusion in the densified MOF, attributed to its small pore window and minimal interparticle voids. The lighter Kr element demonstrates facile surface passage and higher diffusivity within the material, while the heavier Xe encounters increased difficulty entering the material and lower diffusivity. This Kr-selective MOF not only represents a significant breakthrough in Kr separation but also demonstrates remarkable processability and scalability to kilogram levels. The findings presented herein underscore the transformative potential of engineered MOFs in addressing complex challenges, heralding a new era of Kr separation technologies.

2.
Environ Sci Technol ; 55(9): 6239-6247, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33821621

ABSTRACT

White wastes (unseparated plastics, face masks, textiles, etc.) pose a serious challenge to sustainable human development and the ecosystem and have recently been exacerbated due to the surge in plastic usage and medical wastes from COVID-19. Current recycling methods such as chemical recycling, mechanical recycling, and incineration require either pre-sorting and washing or releasing CO2. In this work, a carbon foam microwave plasma process is developed, utilizing plasma discharge to generate surface temperatures exceeding ∼3000 K in a N2 atmosphere, to convert unsorted white wastes into gases (H2, CO, C2H4, C3H6, CH4, etc.) and small amounts of inorganic minerals and solid carbon, which can be buried as artificial "coal". This process is self-perpetuating, as the new solid carbon asperities grafted onto the foam's surface actually increase the plasma discharge efficiency over time. This process has been characterized by in situ optical probes and infrared sensors and optimized to handle most of the forms of white waste without the need for pre-sorting or washing. Thermal measurement and modeling show that in a flowing reactor, the device can achieve locally extremely high temperatures, but the container wall will still be cold and can be made with cheap materials, and thus, a miniaturized waste incinerator is possible that also takes advantage of intermittent renewable electricity.


Subject(s)
COVID-19 , Refuse Disposal , Carbon , Ecosystem , Humans , Hydrocarbons , Microwaves , SARS-CoV-2
3.
ACS Appl Mater Interfaces ; 12(40): 45342-45350, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32910854

ABSTRACT

Mechanically robust forms of HKUST-1 metal-organic frameworks (MOFs) were fabricated by embedding the MOF crystals in a passive polyacrylonitrile (PAN) matrix at different MOF loadings of 10-90 mass %. PAN is highly porous and acts as a scaffold that holds the active MOF adsorbent in place. These MOF-PAN composites were then evaluated for capturing Xe. Data presented herein show that the PAN matrix does not notably interfere with the Xe capture process, where the Xe capacities scale somewhat linearly with the increase in MOF loadings within the composites. Also, γ radiation exposures to the composites revealed that they are highly tolerant to these types of radiation fields.

4.
Nat Commun ; 11(1): 3103, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555193

ABSTRACT

Capture and storage of volatile radionuclides that result from processing of used nuclear fuel is a major challenge. Solid adsorbents, in particular ultra-microporous metal-organic frameworks, could be effective in capturing these volatile radionuclides, including 85Kr. However, metal-organic frameworks are found to have higher affinity for xenon than for krypton, and have comparable affinity for Kr and N2. Also, the adsorbent needs to have high radiation stability. To address these challenges, here we evaluate a series of ultra-microporous metal-organic frameworks, SIFSIX-3-M (M = Zn, Cu, Ni, Co, or Fe) for their capability in 85Kr separation and storage using a two-bed breakthrough method. These materials were found to have higher Kr/N2 selectivity than current benchmark materials, which leads to a notable decrease in the nuclear waste volume. The materials were systematically studied for gamma and beta irradiation stability, and SIFSIX-3-Cu is found to be the most radiation resistant.

SELECTION OF CITATIONS
SEARCH DETAIL
...