Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 805: 150314, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34543797

ABSTRACT

Mediterranean islands are considered especially vulnerable to biological invasions by alien plants. However, there is a lack of studies on island scale regarding the factors that determine alien plant's spatial distribution, and the way they affect invasion process. A roadside survey of alien plant species was conducted on Lesvos, the 8th largest island in Mediterranean basin. Data on species counts and explanatory variables were aggregated to a 1 sq. km vector grid and brought together into a single GIS layer. Alien species counts were modelled by using a Negative-binomial model while a Generalised Additive Model was used to examine possible non-linear relationships to the predictors by using splines. A subset of significant factors, related both to human activities and the environment, shaped the spatial distribution of aliens and influenced, in various ways, their future invasion outcome. Transformed areas with high levels of anthropogenic pressures and disturbances, including high population numbers, dense road network, ports, and intensive land use, as is the case for coastal zones, promoted the presence of alien species. Contrary, modified areas, such as grazed lands, seemed to restrict alien species occurrences, possibly due to the long grazing history these areas present, a regime in which aliens are not adapted. Alien plants presence was positively associated with high levels of NPP, diversity of geological substrates, and a west-facing aspect. Anthropogenic determinants of alien spatial patterns were primarily connected to increased propagule pressure, whereas environmental factors demonstrated the preference of alien plants for resource-rich environments.


Subject(s)
Introduced Species , Plants , Adaptation, Physiological , Ecosystem , Humans , Mediterranean Islands
3.
Sci Total Environ ; 718: 137437, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32325621

ABSTRACT

Fire affects and is affected by leaf functional traits indicative of resource allocation trade-offs. Global change drivers constrain both the resource-use strategies and flammability of coexisting species. However, small attention has been given in identifying links among flammability and plant economics. Ambiguity comes from the fact that flammability is a multidimensional trait. Different flammability attributes (i.e. ignitibility, sustainability, combustibility and consumability) have been used to classify species, but no widely-accepted relationships exist between attributes. We hypothesised that flammability is a spectrum (defined by its four attributes) and the alternative flammability syndromes of coexisting species can be captured by their resource-use strategies. Furthermore, we argue that flammability syndromes are adaptive strategies that ensure persistence in the post-fire community. We conducted a large-scale study to estimate all flammability attributes on leaves from nine, dominant, thermo-Mediterranean species with alternative resource-use and fire-response strategies across a wide environmental and geographic gradient. We assessed the interdependence among attributes, and their variation across ecological scales (genus, species, individual, site and region). Furthermore, we collected 10 leaf functional traits, conducted a soil study and extracted long-term climatological data to quantify their effect on flammability attributes. We found that leaf flammability in thermo-Mediterranean vegetation is a continuous two-dimensional spectrum. The first dimension, driven by leaf shape and size, represents heat release rate (combustibility vs. sustainability), while the second, controlled by leaf economics, presents ignition delay and total heat release (i.e. consumability). Alternative flammability syndromes can increase fitness in fire-prone communities by offering qualitative differences in survival or reproduction. Trade-offs and constraints that control the distribution of resource-use strategies across environmental gradients appeared to drive leaf flammability syndromes as well. Tying the flammability spectrum with resource allocation trade-offs on a global scale can help us predict future ecosystem properties and fire regimes and illustrate evolutionary constraints on flammability.


Subject(s)
Fires , Ecosystem , Plant Leaves , Soil
4.
Front Plant Sci ; 11: 212, 2020.
Article in English | MEDLINE | ID: mdl-32194599

ABSTRACT

Plant structural and biochemical traits are frequently used to characterise the life history of plants. Although some common patterns of trait covariation have been identified, recent studies suggest these patterns of covariation may differ with growing location and/or plant functional type (PFT). Mediterranean forest tree/shrub species are often divided into three PFTs based on their leaf habit and form, being classified as either needleleaf evergreen (Ne), broadleaf evergreen (Be), or broadleaf deciduous (Bd). Working across 61 mountainous Mediterranean forest sites of contrasting climate and soil type, we sampled and analysed 626 individuals in order to evaluate differences in key foliage trait covariation as modulated by growing conditions both within and between the Ne, Be, and Bd functional types. We found significant differences between PFTs for most traits. When considered across PFTs and by ignoring intraspecific variation, three independent functional dimensions supporting the Leaf-Height-Seed framework were identified. Some traits illustrated a common scaling relationship across and within PFTs, but others scaled differently when considered across PFTs or even within PFTs. For most traits much of the observed variation was attributable to PFT identity and not to growing location, although for some traits there was a strong environmental component and considerable intraspecific and residual variation. Nevertheless, environmental conditions as related to water availability during the dry season and to a smaller extend to soil nutrient status and soil texture, clearly influenced trait values. When compared across species, about half of the trait-environment relationships were species-specific. Our study highlights the importance of the ecological scale within which trait covariation is considered and suggests that at regional to local scales, common trait-by-trait scaling relationships should be treated with caution. PFT definitions by themselves can potentially be an important predictor variable when inferring one trait from another. These findings have important implications for local scale dynamic vegetation models.

5.
Sci Total Environ ; 672: 583-592, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30965269

ABSTRACT

Vascular plants have been found to align along globally-recognised resource-allocation trade-offs among specific functional traits. Genetic constrains and environmental pressures limit the spectrum of viable resource-use strategies employed by plant species. While conspecific plants have often been described as identical, intraspecific variation facilitates species coexistence and evolutionary potential. This study attempts to link an individual's phenotype to its environmental tolerance and ecosystem function. We hypothesised that: (1) seasonal variation in water availability has selected for tight phenotypic integration patterns that shape Mediterranean vegetation; however, (2) coexisting species employ alternative resource-use strategies to avoid competitive exclusion; specifically (3) species with smaller climatic niches (i.e. potential distributions) display higher functional diversity. We examined the interdependence among and the sources of variation within 11 functional traits, reflecting whole-plant economics (e.g. construction costs, hydraulics, defences, water storage capacity), from nine dominant, thermo-Mediterranean species measured across a wide environmental and geographic gradient. Furthermore, we delineated the phenotypic and climatic hypervolumes of each studied species to test for climatic niche overlap and functional distinctiveness. By adopting this multidimensional trait-based approach we detected fundamental phenotypic integration patterns that define thermo-Mediterranean species regardless of life history strategy. The studied traits emerged intercorrelated shaping a resource-allocation spectrum. Significant intraspecific variability in most measured traits allowed for functional distinctiveness among the measured species. Higher functional diversity was observed in species restricted within narrower climatic niches. Our results support our initial hypotheses. The studied functional traits collectively formed an integrated space of viable phenotypic expressions; however, phenotypic plasticity enables functionally distinctive species to succeed complementary in a given set of environmental conditions. Functional variability among coexisting individuals defined species' climatic niches within the trait-spectrum permitted by Mediterranean conditions. Ultimately, a species establishment in a locality depends on the extent that it can shift its trait values.


Subject(s)
Ecosystem , Environmental Monitoring , Phenotype , Plants/classification , Biodiversity , Climate , Mediterranean Region , Nitrogen , Plant Leaves , Plants/anatomy & histology , Seasons , Soil , Species Specificity
6.
Sci Total Environ ; 601-602: 461-468, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28575824

ABSTRACT

This paper aims to determine the main factors that shape the spatial patterns of alien plant species occurrence across Natura 2000 Special Areas of Conservation (SACs) in Greece, and quantify their influence. A series of spatial analysis techniques for the development of a spatial database of the factors involved, followed by a boosted negative binomial Generalised Additive Model for location scale and shape, were implemented. Native plant species richness, topography and hydrography, human population density, and a spatial preference to the northern-western sites are the key factors that explain the variation in the occurrence of alien plant species. Native plant species richness and human population density have a positive effect on alien plant species presence, while topography aspects, such as elevation and slope, and the distance from the hydrographical network a negative one. All factors are indirectly linked to propagule pressure emphasizing the importance of human activities for the efforts on managing protected areas.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Introduced Species , Plants , Environmental Monitoring , Greece , Population Dynamics
7.
Sci Total Environ ; 598: 393-403, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28448931

ABSTRACT

In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (PSP). The responsiveness of annual growth to PSP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions.


Subject(s)
Climate , Forests , Trees/growth & development , Abies , Climate Change , Fagus , Greece , Photosynthesis , Picea , Pinus , Quercus , Water/physiology
8.
Environ Manage ; 37(6): 826-39, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16514480

ABSTRACT

We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.


Subject(s)
Biodiversity , Ecosystem , Fires , Poaceae/physiology , Soil/analysis , Biomass , Poaceae/growth & development , Population Density , Population Dynamics , Soil/standards , Soil Microbiology , Species Specificity
9.
Oecologia ; 143(3): 428-37, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15711823

ABSTRACT

This paper reports the findings of a short-term natural invasibility field study in constructed Mediterranean herbaceous communities of varying diversities, under a fire treatment. Three components of invasibility, i.e. species richness, density and biomass of invaders, have been monitored in burnt and unburnt experimental plots with resident diversity ranging from monocultures to 18-species mixtures. In general, species richness, density and biomass of invaders decreased significantly with the increase of resident species richness. Furthermore, the density and biomass of invading species were significantly influenced by the species composition of resident communities. Although aboveground biomass, leaf area index, canopy height and percent bare ground of the resident communities explained a significant part of the variation in the success of invading species, these covariates did not fully explain the effects of resident species richness. Fire mainly influenced invasibility via soil nutrient levels. The effect of fire on observed invasibility patterns seems to be less important than the effects of resident species richness. Our results demonstrate the importance of species richness and composition in controlling the initial stages of plant invasions in Mediterranean grasslands but that there was a lack of interaction with the effects of fire disturbance.


Subject(s)
Ecosystem , Fires , Poaceae/physiology , Analysis of Variance , Biomass , Greece , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL