Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(4): 2042-2046, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33044775

ABSTRACT

Single chain polymer nanoparticles (SCNP) are an attractive polymer architecture that provides functions seen in folded biomacromolecules. The generation of SCNPs, however, is limited by the requirement of a high dilution chemical step, necessitating the use of large reactors to produce processable quantities of material. Herein, the chemical folding of macromolecules into SCNPs is achieved in both batch and flow photochemical processes by the previously described photodimerization of anthracene units in polymethylmethacrylate (100 kDa) under UV irradiation at 366 nm. When employing flow chemistry, the irradiation time is readily controlled by tuning the flow rates, allowing for the precise control over the intramolecular collapse process. The flow system provides a route at least four times more efficient for SCNP formation, reaching higher intramolecular cross-linking ratios five times faster than batch operation.

2.
Macromol Rapid Commun ; : e1800407, 2018 Jul 08.
Article in English | MEDLINE | ID: mdl-29984465

ABSTRACT

The conformation of a polymer in a solvent is typically defined by the solvent quality, which is a consequence of the solvent and macromolecule's chemistry. Yet, additional factors can affect the polymer conformation, such as non-covalent interactions to surfaces or other macromolecules, affecting the amount of polymer-solvent interactions. Herein, chemically folded polymers with protein-like architectures are studied and compared to their unfolded linear precursor in good solvents using rheology measurements. The current research reveals that permanent folding by intramolecular chemical cross-linking limits the chain mobility and therefore causes a reduction in polymer-solvent interactions, making a good solvent become theta. This change not only affects the "solvent quality" but also leads to a change in particle-particle interactions as a function of concentration. These findings provide crucial insight into the effects of intramolecular cross-links on macromolecule solubility and self-assembly, which are critical for mimicking structurally similar biological materials.

3.
Chem Commun (Camb) ; 53(73): 10132-10135, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28848956

ABSTRACT

Addition of intramolecular cross-links to linear polymers significantly improves their resistance to mechanochemical fragmentation, and hence the physical properties of polymer solutions are maintained under shear. However, while fragmentation is suppressed, mechanochemistry of chemical bonds still occurs. In linear polymers, the rate of mechanochemistry has been shown to increase linearly with the degree of polymerisation. Here, we report a systematic study of the mechanochemical fragmentation of a series of polymers with increasing polymer length, linear and intramolecularly collapsed, in order to understand the correlation between destructing and non-damaging mechanochemical events. By comparing the trends of the fragmentation kinetic rate vs. the degree of polymerisation, the effect of intramolecular collapse on fundamental mechanochemistry parameters such as the limiting molecular weight and stabilisation effect can be further understood.

4.
Angew Chem Int Ed Engl ; 56(23): 6431-6434, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28464408

ABSTRACT

Many of the attractive properties in polymers are a consequence of their high molecular weight and therefore, scission of chains due to mechanochemistry leads to deterioration in properties and performance. Intramolecular cross-links are systematically added to linear chains, slowing down mechanochemical degradation to the point where the chains become virtually invincible to shear in solution. Our approach mimics the immunoglobulin-like domains of Titin, whose structure directs mechanical force towards the scission of sacrificial intramolecular hydrogen bonds, absorbing mechanical energy while unfolding. The kinetics of the mechanochemical reactions supports this hypothesis, as the polymer properties are maintained while high rates of mechanochemistry are observed. Our results demonstrate that polymers with intramolecular cross-links can be used to make solutions which, even under severe shear, maintain key properties such as viscosity.

5.
Soft Matter ; 13(15): 2808-2816, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28345097

ABSTRACT

Single chain polymer nanoparticles (SCPNs) are formed from intrachain cross-linking of a single polymer chain, making SCPN distinct from other polymer nanoparticles for which the shape is predefined before polymerization. The degree of cross-linking in large part determines the internal architecture of the SCPNs and therefore their mechanical and thermomechanical properties. Here, we use molecular dynamics (MD) simulations to study thermomechanical behavior of individual SCPNs with different underlying structures by varying the ratio of cross-linking and the degree of polymerization. We characterize the particles in terms of shape, structure, glass transition temperature, mobility, and stress response to compressive loading. The results indicate that the constituent monomers of SCPNs become less mobile as the degree of cross-linking is increased corresponding to lower diffusivity and higher stress at a given temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...