Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(8): e3002237, 2023 08.
Article in English | MEDLINE | ID: mdl-37552690

ABSTRACT

In vivo direct neuronal reprogramming relies on the implementation of an exogenous transcriptional program allowing to achieve conversion of a particular neuronal or glial cell type towards a new identity. The transcription factor (TF) Fezf2 is known for its role in neuronal subtype specification of deep-layer (DL) subcortical projection neurons. High ectopic Fezf2 expression in mice can convert both upper-layer (UL) and striatal projection neurons into a corticofugal fate, even if at low efficiency. In this study, we show that Fezf2 synergizes with the nuclear co-adaptor Lmo4 to further enhance reprogramming of UL cortical pyramidal neurons into DL corticofugal neurons, at both embryonic and early postnatal stages. Reprogrammed neurons express DL molecular markers and project toward subcerebral targets, including thalamus, cerebral peduncle (CP), and spinal cord (SC). We also show that co-expression of Fezf2 with the reprogramming factors Neurog2 and Bcl2 in early postnatal mouse glia promotes glia-to-neuron conversion with partial hallmarks of DL neurons and with Lmo4 promoting further morphological complexity. These data support a novel role for Lmo4 in synergizing with Fezf2 during direct lineage conversion in vivo.


Subject(s)
DNA-Binding Proteins , Neurons , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/physiology , Pyramidal Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Front Neurosci ; 16: 919462, 2022.
Article in English | MEDLINE | ID: mdl-36532282

ABSTRACT

The proneural transcription factor Achaete-scute complex-like 1 (Ascl1) is a major regulator of neural fate decisions, implicated both in neurogenesis and oligodendrogliogenesis. Focusing on its neurogenic activity, Ascl1 has been widely used to reprogram non-neuronal cells into induced neurons. In vitro, Ascl1 induces efficient reprogramming of proliferative astroglia from the early postnatal cerebral cortex into interneuron-like cells. Here, we examined whether Ascl1 can similarly induce neuronal reprogramming of glia undergoing proliferation in the postnatal mouse cerebral cortex in vivo. Toward this goal, we targeted cortical glia during the peak of proliferative expansion (i.e., postnatal day 5) by injecting a retrovirus encoding for Ascl1 into the mouse cerebral cortex. In contrast to the efficient reprogramming observed in vitro, in vivo Ascl1-transduced glial cells were converted into doublecortin-immunoreactive neurons only with very low efficiency. However, we noted a drastic shift in the relative number of retrovirus-transduced Sox10-positive oligodendrocyte progenitor cells (OPCs) as compared to glial fibrillary acidic protein (GFAP)-positive astrocytes. Genetic fate mapping demonstrated that this increase in OPCs was not due to Ascl1-mediated astrocyte-to-OPC fate conversion. Rather, EdU incorporation experiments revealed that Ascl1 caused a selective increase in proliferative activity of OPCs, but not astrocytes. Our data indicate that rather than inducing neuronal reprogramming of glia in the early postnatal cortex, Ascl1 is a selective enhancer of OPC proliferation.

4.
Sci Rep ; 8(1): 1976, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386583

ABSTRACT

Identifying the true identity of a subject in the absence of external verification criteria (documents, DNA, fingerprints, etc.) is an unresolved issue. Here, we report an experiment on the verification of fake identities, identified by means of their specific keystroke dynamics as analysed in their written response using a computer keyboard. Results indicate that keystroke analysis can distinguish liars from truth tellers with a high degree of accuracy - around 95% - thanks to the use of unexpected questions that efficiently facilitate the emergence of deception clues.

5.
J Neurosci ; 33(18): 7856-69, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23637177

ABSTRACT

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer's disease because they are also involved in the proteolytic generation of the neurotoxic amyloid ß-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Neuregulins/metabolism , Paracrine Communication/physiology , ADAM17 Protein , Animals , Cell Membrane/metabolism , Cells, Cultured , Cricetinae , Cricetulus , Embryo, Mammalian , Epidermal Growth Factor/analogs & derivatives , Epidermal Growth Factor/chemistry , Humans , Immunoprecipitation , Neuregulins/genetics , Neurons , Phosphorylation , Proteolysis , RNA, Messenger/administration & dosage , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Schwann Cells , Transfection , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...