Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241913

ABSTRACT

The interest in high hydrostatic pressure (HHP) is mostly focused on the inactivation of deleterious enzymes, considering the quality-related issues associated with enzymes in foods. However, more recently, HHP has been increasingly studied for several biotechnological applications, including the possibility of carrying out enzyme-catalyzed reactions under high pressure. This review aims to comprehensively present and discuss the effects of HHP on the kinetic catalytic action of enzymes and the equilibrium of the reaction when enzymatic reactions take place under pressure. Each enzyme can respond differently to high pressure, mainly depending on the pressure range and temperature applied. In some cases, the enzymatic reaction remains significantly active at high pressure and temperature, while at ambient pressure it is already inactivated or possesses minor activity. Furthermore, the effect of temperature and pressure on the enzymatic activity indicated a faster decrease in activity when elevated pressure is applied. For most cases, the product concentration at equilibrium under pressure increased; however, in some cases, hydrolysis was preferred over synthesis when pressure increased. The compiled evidence of the effect of high pressure on enzymatic activity indicates that pressure is an effective reaction parameter and that its application for enzyme catalysis is promising.


Subject(s)
Hydrostatic Pressure , Temperature , Hydrolysis , Catalysis , Kinetics
2.
Foods ; 12(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36900495

ABSTRACT

This study tested hyperbaric storage (25-150 MPa, for 30 days) at room-temperature (HS/RT, 18-23 °C) in order to control the development of Byssochlamys nivea ascospores in apple juice. In order to mimic commercially pasteurized juice contaminated with ascospores, thermal pasteurization (70 and 80 °C for 30 s) and nonthermal high pressure pasteurization (600 MPa for 3 min at 17 °C, HPP) took place, and the juice was afterwards placed under HS/RT conditions. Control samples were also placed in atmospheric pressure (AP) conditions at RT and were refrigerated (4 °C). The results showed that HS/RT, in samples without a pasteurization step and those pasteurized at 70 °C/30 s, was able to inhibit ascospore development, contrarily to samples at AP/RT and refrigeration. HS/RT for samples pasteurized at 80 °C/30 s evidenced ascospore inactivation, especially at 150 MPa, wherein an overall reduction of at least 4.73 log units of ascospores was observed to below detection limits (1.00 Log CFU/mL); meanwhile, for HPP samples, especially at 75 and 150 MPa, an overall reduction of 3 log units (to below quantification limits, 2.00 Log CFU/mL) was observed. Phase-contrast microscopy revealed that the ascospores do not complete the germination process under HS/RT, hence avoiding hyphae formation, which is important for food safety since mycotoxin development occurs only after hyphae formation. These findings suggest that HS/RT is a safe food preservation methodology, as it prevents ascospore development and inactivates them following commercial-like thermal or nonthermal HPP pasteurization, preventing mycotoxin production and enhancing ascospore inactivation.

SELECTION OF CITATIONS
SEARCH DETAIL
...