Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 125: 312-321, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33639312

ABSTRACT

Vulvovaginal candidiasis (VVC) represents a considerable health burden for women. Despite the availability of a significant array of antifungal drugs and topical products, the management of the infection is not always effective, and new approaches are needed. Here, we explored cationic N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles (NPs) as carriers of clotrimazole (CLT) for the topical treatment of VVC. CLT-NPs with approximately 280 nm in diameter were obtained by self-assembly in water and subsequent stabilization by ionic crosslinking with tripolyphosphate. The nanosystem featured pH-independent sustained drug release up to 24 h, which affected both in vitro anti-Candida activity and cytotoxicity. The CLT-loaded nanostructured platform yielded favorable selectivity index values for a panel of standard strains and clinical isolates of Candida spp. and female genital tract cell lines (HEC-1-A, Ca Ski and HeLa), as compared to the free drug. CLT-NPs also improved in vitro drug permeability across HEC-1-A and Ca Ski cell monolayers, thus suggesting that the nanocarrier may provide higher mucosal tissue levels of the active compound. Overall, data support that CLT-NPs may be a valuable asset for the topical treatment of VVC. STATEMENT OF SIGNIFICANCE: Topical azoles such as clotrimazole (CLT) are first line antifungal drugs for the management of vulvovaginal candidiasis (VVC), but their action may be limited by issues such as toxicity and poor capacity to penetrate the genital mucosa. Herein, we report on the ability of a new cationic N-(2­hydroxy)-propyl-3-trimethylammonium, O-dipalmitoyl chitosan derivative (DPCat35) to yield tripolyphosphate-reinforced micelle-like nanostructures that are suitable carriers for CLT. In particular, these nanosystems were able to improve the in vitro selectivity index of the drug and to provide enhanced epithelial drug permeability when tested in cell monolayer models. These data support that CLT-loaded DPCat35 nanoparticles feature favorable properties for the development of new nanomedicines for the topical management of VVC.


Subject(s)
Candidiasis, Vulvovaginal , Chitosan , Nanoparticles , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Candidiasis, Vulvovaginal/drug therapy , Clotrimazole/pharmacology , Female , Humans
2.
Biomacromolecules ; 22(2): 938-948, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33405910

ABSTRACT

Vaginal films featuring the pH-dependent release of tenofovir (TFV) were developed for the prevention of sexual transmission of human immunodeficiency syndrome (HIV). Films based on hydroxypropyl methylcellulose and zein were prepared incorporating different plasticizers [oleic acid, lactic acid, glycerol, and polyethylene glycol 400 (PEG)] and evaluated for in vitro drug release in an acidic simulated vaginal fluid (pH 4.2) and a slightly alkaline mixture of simulated seminal and vaginal fluids (pH 7.5). Results revealed that optimal biphasic TFV release was possible with proper combination of plasticizers (PEG and oleic acid, 1:7 w/w) and by adjusting the plasticizer/matrix-forming material ratio. The films had similar or higher levels of TFV associated with genital epithelial cells (Ca Ski or HEC-1-A cells) but lower drug permeability compared to the free drug. These data confirm that films have the potential to achieve suitable mucosal levels of TFV with low systemic exposure. The films developed could protect women from HIV sexual transmission.


Subject(s)
Plasticizers , Zein , Drug Liberation , Female , Humans , Hydrogen-Ion Concentration , Hypromellose Derivatives , Tenofovir
3.
Acta Biomater ; 121: 316-327, 2021 02.
Article in English | MEDLINE | ID: mdl-33333257

ABSTRACT

Interest is growing in "smart" vaginal microbicides as a strategy to protect women from sexual transmission of human immunodeficiency virus (HIV). The concept is based on the development of products featuring low drug release in acidic media such as vaginal fluid but switch to a fast release profile when the medium becomes neutral or slightly alkaline. This mimics the surge in pH occurring in the vagina after sexual intercourse due to the seminal fluid. Semen is the main vehicle for HIV-1, and increasing antiretroviral drug levels in the vagina upon ejaculation may contribute to enhanced protection against viral sexual transmission. This work explores the use of different pharmaceutical-grade methacrylic acid-based polymers (EudragitⓇ RL, RS, L and S) for developing vaginal films allowing the pH-dependant release of the antiretroviral drug tenofovir (TFV). EudragitⓇ L 100 and EudragitⓇ S 100, containing triethyl citrate as plasticiser, proved to be suitable for manufacturing films with optimal dual in vitro drug-release behaviour. TFV-release can be sustained for several days after film administration and all the drug is released in a few hours in conditions simulating ejaculation. The films' mechanical properties were also deemed suitable for comfortable vaginal administration. Two optimized films were further assessed using HEC-1-A and Ca Ski cell monolayer models and were found to possess favourable drug permeability profiles and drug levels associated to cell monolayer as compared to free TFV. Overall, pH-dependant films containing tenofovir may constitute promising candidates for "smart" vaginal microbicides to protect women from sexual HIV transmission.


Subject(s)
Anti-HIV Agents , HIV-1 , Pharmaceutical Preparations , Pre-Exposure Prophylaxis , Administration, Intravaginal , Anti-HIV Agents/pharmacology , Female , Humans , Hydrogen-Ion Concentration , Male , Methacrylates , Polymers , Vagina
4.
J Control Release ; 327: 477-499, 2020 11 10.
Article in English | MEDLINE | ID: mdl-32853730

ABSTRACT

Films have undoubtedly seen the most significant advances in their development in recent years of all the pharmaceutical forms for the vaginal administration of drugs. Films combine the advantages of gels and solid pharmaceutical forms, and their great versatility is largely determined by the numerous polymers that can be used for their fabrication. They may be based on many natural polymers, and cellulose derivatives, polyvinyl alcohol or acrylic derivatives - among others - are also frequently used. The combination of different polymers and the inclusion of plasticizing agents makes them extremely versatility for responding to a range of therapeutic needs. The techniques used to produce films have also undergone substantial development. Although the solvent casting technique is by far the most widely used in fabrication, alternative options have also emerged such as electrospinning, moulding extrusion and 3D printing. Various research groups have proposed a proliferation of assays to characterise vaginal films in recent years, which highlight the importance of the preliminary evaluation and determination of the films' uniformity, in addition to tests to determine their permeability and hydrophilic/hydrophobic coefficient and their mechanical properties, the application of imaging techniques and thermal analysis, and especially the evaluation of the mucoadhesive properties and control over the drug release. This article offers a critical overview of the advances in the development and fabrication of films intended for vaginal drug delivery, and summarises current clinical applications for vaginal films.


Subject(s)
Pharmaceutical Preparations , Administration, Intravaginal , Drug Delivery Systems , Drug Liberation , Female , Humans , Polymers
5.
Pharmaceutics ; 11(3)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917532

ABSTRACT

Prevention strategies play a key role in the fight against HIV/AIDS. Vaginal and rectal microbicides hold great promise in tackling sexual transmission of HIV-1, but effective and safe products are yet to be approved and made available to those in need. While most efforts have been placed in finding and testing suitable active drug candidates to be used in microbicide development, the last decade also saw considerable advances in the design of adequate carrier systems and formulations that could lead to products presenting enhanced performance in protecting from infection. One strategy demonstrating great potential encompasses the use of nanosystems, either with intrinsic antiviral activity or acting as carriers for promising microbicide drug candidates. Polymeric nanoparticles, in particular, have been shown to be able to enhance mucosal distribution and retention of promising antiretroviral compounds. One important aspect in the development of nanotechnology-based microbicides relates to the design of pharmaceutical vehicles that allow not only convenient vaginal and/or rectal administration, but also preserve or even enhance the performance of nanosystems. In this manuscript, we revise relevant work concerning the selection of vaginal/rectal dosage forms and vehicle formulation development for the administration of microbicide nanosystems. We also pinpoint major gaps in the field and provide pertinent hints for future work.

6.
Curr Pharm Des ; 21(1): 25-30, 2015.
Article in English | MEDLINE | ID: mdl-25189864

ABSTRACT

Bacteria are able to colonize and thrive in a variety of different environments as a biofilm, but only within the last half century new insights have been gained in this complex biosystem. Bacterial biofilms play a major role in human health by forming a defensive barrier against antibacterial chemical therapeutics and other potential pathogens, and in infectious disease when the bacteria invade normally sterile compartments. Quorum sensing is the signaling network for cell-to-cell communication and utilized by bacteria to regulate biofilms and other cellular processes. This review will describe recent advances in quorum sensing and biofilms. Initially, it will focus on Streptococcus pneumoniae biofilm regulation and the involvement of the ComABCDE pathway. As part of this review an original analysis of the genotypic and phenotypic variation of the signaling molecule, ComC and its cognate receptor ComD, firstly within the pneumococcal species and then within the genus Streptococcus will be presented. Additionally, a pathway similar to ComABCDE, the BlpABCSRH that regulates bacteriocin and immunity protein production that inhibit the growth of competing bacteria will be described. This review will then examine a third quorum sensing mechanism in the pneumococcus, the LuxS/AI-2, and present a novel gene and protein sequence comparative analysis that indicates its occurrence is more universal across bacterial genera compared with the Com pathway, with more sequence similarities between bacterial genera that are known to colonize the mucosal epithelium.


Subject(s)
Biofilms/growth & development , Quorum Sensing , Streptococcus pneumoniae/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Communication/physiology , Genes, Bacterial , Humans , Signal Transduction/physiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...