Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888197

ABSTRACT

Second harmonic generation (SHG) is forbidden from most bulk metals because metals are characterized by centrosymmetric symmetry. Adsorption or desorption of molecules at the metal interface can break the symmetry and lead to SHG responses. Yet, the response is relatively low, and minute changes occurring at the interface, especially at solid/liquid interfaces, like in battery electrodes are difficult to assess. Herein, we use a plasmonic structure milled in a gold electrode to increase the overall SHG signal from the interface and gain information about small changes occurring at the interface. Using a specific homebuilt cell, we monitor changes at the liquid/electrode interface. Specifically, traces of water in dimethoxyethane (DME) have been detected following changes in the SHG responses from the plasmonic structures. We propose that by plasmonic structures this technique can be used for assessing minute changes occurring at solid/liquid interfaces such as battery electrodes.

2.
Light Sci Appl ; 7: 49, 2018.
Article in English | MEDLINE | ID: mdl-30839636

ABSTRACT

Second harmonic generation (SHG) is forbidden for materials with inversion symmetry, such as bulk metals. Symmetry can be broken by morphological or dielectric discontinuities, yet SHG from a smooth continuous metallic surface is negligible. Using non-linear microscopy, we experimentally demonstrate enhanced SHG within an area of smooth silver film surrounded by nanocavities. Nanocavity-assisted SHG is locally enhanced by more than one order of magnitude compared to a neighboring silver surface area. Linear optical measurements and cathodoluminescence (CL) imaging substantiate these observations. We suggest that plasmonic modes launched from the edges of the nanocavities propagate onto the smooth silver film and annihilate, locally generating SHG. In addition, we show that these hotspots can be dynamically controlled in intensity and location by altering the polarization of the incoming field. Our results show that switchable nonlinear hotspots can be generated on smooth metallic films, with important applications in photocatalysis, single-molecule spectroscopy and non-linear surface imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...