Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 768: 144899, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736351

ABSTRACT

Tropical plant species are vulnerable to climate change and global warming. Since flowering is a critical factor for plant reproduction and seed-set, warming and elevated atmospheric carbon dioxide concentrations (eCO2) are crucial climate change factors that can affect plant reproductive dynamics and flowering related events in the tropics. Using a combined free-air CO2 enrichment and a free-air temperature-controlled enhancement system, we investigate how warming (+2 °C above ambient, eT) and elevated [CO2] (~600 ppm, eCO2) affect the phenological pattern, plant-insect interactions, and outcrossing rates in the tropical legume forage species Stylosanthes capitata Vogel (Fabaceae). In comparison to the control, a significantly greater number of flowers (NF) per plot (+62%) were observed in eT. Furthermore, in warmed plots flowers began opening approximately 1 h earlier (~09:05), with a canopy temperature of ~23 °C, than the control (~09:59) and eCO2 (~09:55) treatments. Flower closure occurred about 3 h later in eT (~11:57) and control (~13:13), with a canopy temperature of ~27 °C. These changes in flower phenology increased the availability of floral resources and attractiveness for pollinators such as Apis mellifera L. and visitors such as Paratrigona lineata L., with significant interactions between eT treatments and insect visitation per hour/day, especially between 09:00-10:40. In comparison to the control, the additive effects of combined eCO2 + eT enhanced the NF by 137%, while the number of A. mellifera floral visits per plot/week increased by 83% during the period of greatest flower production. Although we found no significant effect of treatments on mating system parameters, the overall mean multilocus outcrossing rate (tm = 0.53 ± 0.03) did confirm that S. capitata has a mixed mating system. The effects of elevated [CO2] and warming on plant-pollinator relationships observed here may have important implications for seed production of tropical forage species in future climate scenarios.


Subject(s)
Carbon Dioxide , Reproduction , Animals , Bees , Climate Change , Flowers , Insecta , Pollination
2.
PLoS One ; 14(3): e0213796, 2019.
Article in English | MEDLINE | ID: mdl-30870522

ABSTRACT

Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.


Subject(s)
Bees/genetics , Epidermis/metabolism , Epidermis/ultrastructure , Hydrocarbons/analysis , Insect Proteins/genetics , Integumentary System/physiology , Transcriptome , Animals , Bees/growth & development , Female , Metamorphosis, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...