Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 60(20): 7805-28, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26406277

ABSTRACT

Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.


Subject(s)
DNA/chemistry , Protons , Radiobiology , Radiotherapy , Water/chemistry , Electrons , Energy Metabolism , Humans , Kinetics
2.
Appl Radiat Isot ; 83 Pt B: 105-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23415107

ABSTRACT

Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data.


Subject(s)
Electrons , Ions , Models, Theoretical , Probability
3.
Med Phys ; 40(6): 064101, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718619

ABSTRACT

PURPOSE: The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. METHODS: The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. RESULTS: Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). CONCLUSIONS: On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.


Subject(s)
Ions/chemistry , Linear Energy Transfer , Models, Statistical , Nanoparticles/chemistry , Protons , Scattering, Radiation , Software , Water/chemistry
4.
Phys Med Biol ; 57(10): 3039-49, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22538416

ABSTRACT

In this work, we report total cross sections for the single electron capture process induced on DNA/RNA bases by high-energy protons. The calculations are performed within both the continuum distorted wave and the continuum distorted wave-eikonal initial state approximations. The biological targets are described within the framework of self-consistent methods based on the complete neglect of differential overlap model whose accuracy has first been checked for simpler bio-molecules such as water vapour. Furthermore, the multi-electronic problem investigated here is reduced to a mono-electronic one using a version of the independent electron approximation. Finally, the obtained theoretical predictions are confronted with the scarcely available experimental results.


Subject(s)
DNA/chemistry , Electrons , Protons , RNA/chemistry
5.
Phys Med Biol ; 57(7): 2081-99, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22433314

ABSTRACT

Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.


Subject(s)
DNA/chemistry , Protons , Quantum Theory , RNA/chemistry , Models, Molecular , Nucleic Acid Conformation
6.
Phys Med Biol ; 55(20): 6053-67, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20858921

ABSTRACT

Induction of DNA double strand breaks after irradiation is considered of prime importance for producing radio-induced cellular death or injury. However, up to now ion-induced collisions on DNA bases remain essentially experimentally approached and a theoretical model for cross section calculation is still lacking. Under these conditions, we here propose a quantum mechanical description of the ionization process induced by light bare ions on DNA bases. Theoretical predictions in terms of differential and total cross sections for proton, α-particle and bare ion carbon beams impacting on adenine, cytosine, thymine and guanine bases are then reported in the 10 keV amu(-1)-10 MeV amu(-1) energy range. The calculations are performed within the first-order Born approximation (FBA) with biological targets described at the restricted Hartree-Fock level with geometry optimization. Comparisons to recent theoretical data for collisions between protons and cytosine point out huge discrepancies in terms of differential as well as total cross sections whereas very good agreement is shown with our previous classical predictions, especially at high impact energies (E(i) ≥ 100 keV amu(-1)). Finally, in comparison to the rare existing experimental data a systematic underestimation is observed in particular for adenine and thymine whereas a good agreement is reported for cytosine. Thus, further improvements appear as necessary, in particular by using higher order theories like the continuum-distorted-wave one in order to obtain a better understanding of the underlying physics involved in such ion-DNA reactions.


Subject(s)
DNA/chemistry , Quantum Theory , Alpha Particles , Carbon/pharmacology , DNA/genetics , DNA Damage , Ions , Protons
7.
J Chem Phys ; 131(2): 024302, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19603986

ABSTRACT

We present a detailed study of the potential energy surfaces of the water dication correlating asymptotically with O((3)P) and O((1)D). Using ab initio multireference configuration interaction method, we computed a large ensemble of data, which was used to generate a fit of each potential energy surface for bending angles theta > or = 80 degrees degrees and OH distances R(OH) > or = 1.0 a.u. The fit is used to investigate the dissociation dynamics along each potential energy surface for several initial geometries corresponding to Franck-Condon transition from neutral or singly ionized water molecule. For each case, we determine the dissociation channels and we compute the kinetic energy release and angular momentum distribution of the final arrangements. Among the eight potential energy surfaces investigated here, only the lowest triplet and the three lowest singlet can lead to the formation of bound residual fragment. The dissociation of HOD(2+) presents a strong preference for OH rather than OD bond breakage. It is characterized by the isotopic ratio, defined as the number of OD(+) over the number of OH(+) residual fragments. This ratio depends strongly on the shape of each potential energy surface and on the initial conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...