Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947515

ABSTRACT

Transition metal carbide nanoparticles are a class of technological interesting materials with a wide range of applications. Among metal carbides, tantalum carbides have good compatibility with the biological environment while molybdenum carbides are used as catalyst in electrochemical reactions. Laser ablation of bulk transition metal targets in some liquids is here reported and laser ablation in organic solvents is used as simple synthetic strategy for the production of carbide nanostructures. Herein, the nanoparticles produced by ultra-short laser ablation of tantalum and molybdenum in water, acetone, ethanol and toluene have been characterized by TEM, XRD and XPS analysis. The combined effect of metal and solvent chemical and physical properties on the composition of the nanomaterials obtained has been pointed out. In particular, the different reactivity of Ta and Mo with respect to oxidizing species determines the composition of particles obtained in water, on the other hand the organic solvents decomposition allows to obtain transition metal carbide (TMC) nanoparticles. The observed carbonaceous shell formed on TMC allows to protect the particle's carbidic core and to improve and tailor the applications of these nanomaterials.

2.
Chemphyschem ; 18(9): 1140-1145, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28141903

ABSTRACT

The formation of an opaque solid foam was induced by the direct interaction between tetraethyl orthosilicate (TEOS) and an ultrashort femtosecond laser source(Nd:glass, 527 nm, 10 Hz, 250 fs). The product, which resulted to be a silica xerogel, was characterized by different techniques. In particular, information about the morphology was obtained by scanning and transmission electron microscopy (SEM and TEM), while the presence of different functional groups was studied through IR measurements. Since the properties of this kind of material can be improved by functionalizing it with metal nanoparticles, a palladium metal target was ablated in liquid TEOS. TEM images show that palladium was present in the form of nanoparticles and EDX measurements confirm the presence of the metal inside the silica network.

3.
J Colloid Interface Sci ; 489: 76-84, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27597260

ABSTRACT

Laser ablation of bulk target in liquid allows to obtain stable nanoparticles and nanostructures, also in metastable phases, limiting the use of hazardous reagents and extreme reaction conditions. Titanium carbide (TiC) is a ceramic compound with several technological applications ranging from biocompatible materials to wear resistant coatings. The possibility to obtain core/shell structures expands its range of application due to the ability of modify the surface properties of the core ceramic material. TiC and metallic titanium targets have been ablated by means of an ultra-short laser source in different liquid media (water, acetone, n-hexane and toluene). The obtained colloidal solutions have been characterized by TEM, XRD and micro-Raman analysis. In all the used experimental conditions TiC nanoparticles have been produced. During water and acetone mediated ablations, the oxidation of titanium has been observed, whereas by using oxygen free solvents, such as n-hexane and toluene, core/shell TiC nanoparticles embedded in amorphous and graphitic carbon shell, respectively, have been obtained.

4.
J Phys Chem A ; 113(52): 14969-74, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20028177

ABSTRACT

The ultrashort pulsed laser deposition of vanadium oxide thin films has been carried out by a frequency-doubled Nd:glass laser with a pulse duration of 250 fs. The characteristics of the plasma produced by the laser-target interaction have been studied by ICCD imaging and optical emission spectroscopy. The results confirm that an emitting plasma produced by ultrashort laser pulses is formed by both a primary and a secondary component. The secondary component consists of particles with a nanometric size, and their composition and spatial angular distribution influence the deposited films. In fact, these films, analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy, are formed by the aggregation of a large number of nanoparticles whose composition is explained by a model based on equilibrium thermal evaporation from particles directly ejected from the target. On these basis, the presence in the films of a mixture of V(2)O(5) and VO(2) is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...