Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514682

ABSTRACT

CubeSats require accurate determination of their orientation relative to the Sun, Earth, and other celestial bodies to operate successfully and collect scientific data. This paper presents an orientation system based on solar and magnetic sensors that offers a cost-effective and reliable solution for CubeSat navigation. Solar sensors analyze the illumination on each face to measure the satellite's orientation relative to the Sun, while magnetic sensors determine the Earth's magnetic field vector in the satellite's reference frame. By combining the measured data with the known ephemeris of the satellite, the satellite-Sun vector and the magnetic field orientation can be reconstructed. The orientation is expressed using quaternions, representing the rotation from the internal reference system of the satellite to the selected reference system. The proposed system demonstrates the ability to accurately determine the orientation of a CubeSat using only two sensors, making it suitable for installations where more complex and expensive instruments are impractical. Additionally, the paper presents a mathematical model of a low-cost CubeSat orientation system and a hardware implementation of the sensor. The technology, using solar and magnetic sensors, provides a reliable and affordable solution for CubeSat navigation, supporting the increasing sophistication of miniature payloads and enabling accurate satellite positioning in space missions.

2.
Nat Commun ; 11(1): 3221, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591516

ABSTRACT

Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.

3.
Microsyst Nanoeng ; 4: 28, 2018.
Article in English | MEDLINE | ID: mdl-31057916

ABSTRACT

A MEMS electrostatic kinetic energy harvester (e-KEH) of about 1 cm2, working at ultralow frequency (1-20 Hz), without any supported additional mass on its mobile electrode, and working even without a vacuum environment is reported. The prototype is especially suitable for environments with abundant low frequency motions such as wearable electronics. The proposed e-KEH consists of a capacitor with a finger-teeth interdigited comb structure. This greatly reduces the air damping effect, and thus the capacitance variation remains important regardless of the presence of air. With the new design, the energy transduced per cycle of excitation is no less than 33 times higher than the classic design within 10-40 Hz/2 g peak, while is 85 times higher at 15 Hz/2 g peak. An enclosed miniature ball combined with non-linear stoppers enables the oscillation of the movable electrode through impact-based frequency up-conversion mechanism, which is also improved by the low air damping. Thanks to this new design, a higher efficiency than the classic gap-closing comb structure is obtained, as a larger range of working frequency (1-180 Hz) in air. A maximum energy conversion of 450 nJ/cycle is obtained with a bias voltage of 45 V and an acceleration of 11 Hz, 3 g peak. Working with a diode AC-DC rectifier, the proposed KEH is able to support up to 3 RFID communications within 16 s while operated at 11 Hz, 3 g peak.

SELECTION OF CITATIONS
SEARCH DETAIL
...