Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745721

ABSTRACT

The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye. Our results suggest that the dye could generate a ternary ground-state complex between collagen-like peptide fibers, specifically with positively charged amino acids (Lys in CLPI and Arg in CLPII), thus stabilizing ordered three-dimensional structures. The discoveries generated in this study provide the structural and atomic bases for the subsequent rational development of new synthetic peptides with improved characteristics for applications in the regeneration of biological tissues during photochemical tissue bonding therapies.

2.
ACS Appl Mater Interfaces ; 11(19): 17697-17705, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31013043

ABSTRACT

The effect of accounting for the total surface in the association of thiol-containing molecules to nanosilver was assessed using isothermal titration calorimetry, along with a new open access algorithm that calculates the total surface area for samples of different polydispersity. Further, we used advanced molecular dynamic calculations to explore the underlying mechanisms for the interaction of the studied molecules in the presence of a nanosilver surface in the form of flat surfaces or as three-dimensional pseudospherical nanostructures. Our data indicate that not only is the total surface area available for binding but also the supramolecular arrangements of the molecules in the near proximity of the nanosilver surface strongly affects the affinity of thiol-containing molecules to nanosilver surfaces.

3.
Nanoscale ; 10(34): 15911-15917, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30106074

ABSTRACT

The interaction of a terminal tryptophan residue within collagen mimetic peptides when tethered to nanometric silver surfaces was studied using a combination of steady state spectroscopy, ultrafast spectroscopy, and molecular dynamics experiments. Our findings indicate that the effective interaction between the tryptophan and the metal surface occurs in short-time scales (ps) and it is responsible for improving the colloidal stability of the nanoparticles exposed to free radicals. The extent and efficiency of the interaction depends on factors beyond the peptide length that include conformation and distance from the terminal tryptophan to the metal surface.


Subject(s)
Metal Nanoparticles/chemistry , Peptides/chemistry , Reactive Oxygen Species/chemistry , Silver/chemistry , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...