Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 572314, 2020.
Article in English | MEDLINE | ID: mdl-33042080

ABSTRACT

Fungi have increased tolerance to environmental stress (also related to the access of pollutants, e.g., trace elements and polycyclic aromatic hydrocarbons PAHs). The aim of the study was to evaluate the mycobiome and functional diversity of fungi in long-term crude-oil contaminated soils as the potential bioremediators of oil contaminated sites. Samples were taken from three historical oil wells (over a century old) at two distances: within a 0.5 m radius of the oil wells (OWP1, OWP2, and OWP3) and within a 3 m radius from the oil wells as the controls (OW1, OW2, and OW3). Next generation sequencing (for the ITS region) was accompanied with determination of the functional fungal community based on Biolog FFPlates, glomalin related soil protein (GRSP) content, trace element and PAHs concentration. The research hypothesis assumed that long-term natural bioremediation of crude oil contaminated soils can contribute to intensive development of a unique fungal community adapted to the contamination conditions. The identification of such fungi can be of particular importance in soil bioremediation. There were significant differences in the fungal community and functional diversity between the soil samples. The soils collected directly from the oil wells were characterized by higher biological activity and higher diversity of PAH-degrading fungal candidates compared to the soils collected within 3 m of the oil wells. The total glomalin-related soil proteins (T-GRSP) and easily-extractable glomalin-related soil proteins (EE-GRSP) contents were lower in soil samples taken directly from the crude oil well. The control soil (OW) subjected to a long-term natural remediation may already have sufficient conditions for the growth and development of mycorrhizal fungi. The mycobiome of the soils collected directly from the oil wells (OWP1, OWP2, and OWP3) was characterized by a 35% share of PAH-degrading candidates, compared to the soil collected at the 3 m distance from the oil wells (OW1, OW2, and OW3) at < 5%. The main PAH-degrading fungal candidates belong to genera Ilyonectria, Chaetomium, Gibberella, Paraphoma, Schizothecium, Pseudorobillarda, Tetracladium, Ganoderma, Cadophora, Exophiala, Knufia, Mycoleptodiscus, Cyphellophora, Fusicolla, Devriesia, Didymella, Plenodomus, Pyrenochaetopsis, Symbiotaphrina, Phallus, Coprinellus, Plectosphaerella, Septoriella, and Hypholoma. The share of three- and four-ringed PAHs in soil was higher as the distance from the oil well increased. These results may indicate that more effective degradation processes occur closer to the oil wells.

2.
Front Microbiol ; 9: 1923, 2018.
Article in English | MEDLINE | ID: mdl-30186255

ABSTRACT

Soil contamination with petroleum, especially in the area of oil wells, is a serious environmental problem. Restoring soil subjected to long-term pollution to its original state is very difficult. Under such conditions, unique bacterial communities develop in the soil that are adapted to the contaminated conditions. Analysis of the structure and function of these microorganisms can be a source of valuable information with regard to bioremediation. The aim of this study was to evaluate structural and functional diversity of the bacterial communities in soils with long-term impacts from petroleum. Samples were taken from the three oldest oil wells at the Crude Oil Mine site in Weglówka, Poland; the oldest was established in 1888. They were collected at 2 distances: (1) within a radius of 0.5 m from the oil wells, representing soil strongly contaminated with petroleum; and (2) 3 m from the oil wells as the controls. The samples were analyzed by 16S rRNA sequencing and the community level physiological profiling (CLPP) method in order to better understand both the genetic and functional structure of soil collected from under oil wells. Significant differences were found in the soil samples with regard to bacterial communities. The soils taken within 0.5 m of the oil wells were characterized by the highest biodiversity indexes. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria were strongly correlated with biological activity in these soils. Families of Alphaproteobacteria were also dominant, including: Bradyrhizobiaceae, Rhizobiaceae, Rhodobacteraceae, Acetobacteraceae, Hyphomicrobiaceae, and Sphingomonadaceae. The study showed that the long term contamination of soil changes bacterial communities and their metabolic activity. Even so, natural bioremediation leads to the formation of specific groups of bacteria that actively grow at the site of contamination in the soil.

3.
Sci Total Environ ; 599-600: 1388-1398, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28531917

ABSTRACT

Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.

4.
Pol J Microbiol ; 64(3): 241-52, 2015.
Article in English | MEDLINE | ID: mdl-26638532

ABSTRACT

The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.


Subject(s)
Azospirillum/metabolism , Dactylis/metabolism , Dactylis/microbiology , Endophytes/metabolism , Environmental Restoration and Remediation/methods , Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Soil Pollutants/metabolism , Azospirillum/genetics , Azospirillum/isolation & purification , Biodegradation, Environmental , Endophytes/genetics , Endophytes/isolation & purification , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil/chemistry
5.
Sci Total Environ ; 496: 510-522, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25108253

ABSTRACT

During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants/analysis , Toxicity Tests/methods , Trace Elements/analysis , Biodegradation, Environmental , Ecotoxicology , France , Risk Assessment/methods , Soil , Soil Pollutants/toxicity , Trace Elements/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...