Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 88(3 Suppl): 1743-1754, 2016.
Article in English | MEDLINE | ID: mdl-27556329

ABSTRACT

Adaptive changes of carbohydrate and lipid metabolism induced by 7, 15, 30, 60, 90, 150 and 200 days of fasting were investigated in red tilapia (Oreochromis sp.). Plasma glucose, lactate and free fatty acids (FFA) levels, liver and muscle glycogen and total lipid contents and rates of FFA release from mesenteric adipose tissue (MAT) were measured. Plasma glucose levels showed significant differences only after 90 days of fasting, when glycemia was 34% lower (50±5mg.dL-1) than fed fish values (74±1mg.dL-1), remaining relatively constant until 200 days of fasting. The content of liver glycogen ("15%) in fed tilapia fell 40% in 7 days of food deprivation. In 60, 90 and 150 days of fasting, plasma FFA levels increased 49%, 64% and 90%, respectively, compared to fed fish values. In agreement with the increase in plasma FFA, fasting induced a clear increase in lipolytic activity of MAT incubated in vitro. Addition of isobutylmethylxanthine (cAMP-phosphodiesterase inhibitor) and isoproterenol (non selective beta adrenergic agonist) to the incubation medium induced a reduction of lipolysis in fasted fish, differently to what was observed in mammal adipose tissue. This study allowed a physiological assessment of red tilapia response to starvation.


Subject(s)
Adipose Tissue/metabolism , Fasting/metabolism , Lipolysis , Tilapia/metabolism , Animals , Tilapia/classification , Time Factors
2.
Can J Physiol Pharmacol ; 86(7): 416-23, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18641690

ABSTRACT

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.


Subject(s)
Adipose Tissue, Brown/metabolism , Fatty Acids/biosynthesis , Glycerophosphates/biosynthesis , Animals , Blotting, Western , Body Composition/physiology , Denervation , Diet , Glucose/metabolism , Glycerol/metabolism , Guanosine Diphosphate/metabolism , Insulin/metabolism , Ion Channels/metabolism , Lipoprotein Lipase/drug effects , Lipoprotein Lipase/metabolism , Male , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Norepinephrine/metabolism , Pyruvic Acid/metabolism , Rats , Rats, Wistar , Triglycerides/metabolism , Uncoupling Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...