Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35888197

ABSTRACT

Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 µm (2.5% excess) for vertical struts to 105.4 µm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 µm (4.2% excess) to 198.6 µm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 µm (-3.0% excess) for vertical struts to 92.8 µm (-8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 µm (-3.0% excess) to 168.7 µm (-21.1% excess). Compressive Young's modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young's modulus from α and ß phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds.

3.
Science ; 322(5902): 733-5, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18974351

ABSTRACT

The expansion of modern human populations in Africa 80,000 to 60,000 years ago and their initial exodus out of Africa have been tentatively linked to two phases of technological and behavioral innovation within the Middle Stone Age of southern Africa-the Still Bay and Howieson's Poort industries-that are associated with early evidence for symbols and personal ornaments. Establishing the correct sequence of events, however, has been hampered by inadequate chronologies. We report ages for nine sites from varied climatic and ecological zones across southern Africa that show that both industries were short-lived (5000 years or less), separated by about 7000 years, and coeval with genetic estimates of population expansion and exit times. Comparison with climatic records shows that these bursts of innovative behavior cannot be explained by environmental factors alone.


Subject(s)
Anthropology, Physical , Archaeology , Africa, Southern , Behavior , Climate , Culture , Emigration and Immigration/history , Geologic Sediments , History, Ancient , Humans , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...