Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0131760, 2015.
Article in English | MEDLINE | ID: mdl-26111147

ABSTRACT

CoREST (CoREST1, rcor1) transcriptional corepressor together with the histone demethylase LSD1 (KDM1A) and the histone deacetylases HDAC1/2 form LSD1-CoREST-HDAC (LCH) transcriptional complexes to regulate gene expression. CoREST1 belong to a family that also comprises CoREST2 (rcor2) and CoREST3 (rcor3). CoREST1 represses the expression of neuronal genes during neuronal differentiation. However, the role of paralogs CoREST2 and CoREST3 in this process is just starting to emerge. Here, we report the expression of all CoRESTs and partners LSD1 and HDAC1/2 in two models of neuronal differentiation: Nerve-Growth-Factor (NGF)-induced neuronal phenotype of PC12 cells, and in vitro maturation of embryonic rat cortical neurons. In both models, a concomitant and gradual decrease of LSD1, HDAC1, HDAC2, CoREST1, and CoREST2, but not CoREST3 was observed. As required by the study, full-length rat rcor1 gene was identified using in silico analysis of available rat genome. The work was also complemented by the analysis of rat RNA-seq databases. The analysis showed that all CoRESTs, including the identified four splicing variants of rat CoREST3, display a wide expression in adult tissues. Moreover, the analysis of RNA-seq databases showed that CoREST2 displays a higher expression than CoREST1 and CoREST3 in the mature brain. Immunofluorescent assays and immunoblots of adult rat brain showed that all CoRESTs are present in both glia and neurons. Regarding functional partnership, CoREST2 and CoREST3 interact with all LSD1 splicing variants. In conclusion, neuronal differentiation is accompanied by decreased expression of all core components of LCH complexes, but not CoREST3. The combination of the differential transcriptional repressor capacity of LCH complexes and variable protein levels of its different components should result in a finely tuned gene expression during neuronal differentiation and in the adult brain.


Subject(s)
Co-Repressor Proteins/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Histone Demethylases/genetics , Neurogenesis/genetics , Neurons/cytology , Animals , Down-Regulation/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , Male , Neurons/metabolism , PC12 Cells , Protein Isoforms/genetics , Rats , Rats, Sprague-Dawley
2.
PLoS One ; 8(1): e55035, 2013.
Article in English | MEDLINE | ID: mdl-23358114

ABSTRACT

Nurr1 (NR4A2) is a transcription factor that belongs to the orphan NR4A group of the nuclear receptor superfamily. Nurr1 plays key roles in the origin and maintenance of midbrain dopamine neurons, and peripheral inflammatory processes. PIASγ, a SUMO-E3 ligase, represses Nurr1 transcriptional activity. We report that Nurr1 is SUMOylated by SUMO-2 in the lysine 91 located in the transcriptional activation function 1 domain of Nurr1. Nurr1 SUMOylation by SUMO-2 is markedly facilitated by overexpressing wild type PIASγ, but not by a mutant form of PIASγ lacking its first LXXLL motif (PIASγmut1). This PIASγmut1 is also unable to interact with Nurr1 and to repress Nurr1 transcriptional activity. Interestingly, the mutant PIASγC342A that lacks SUMO ligase activity is still able to significantly repress Nurr1-dependent transcriptional activity, but not to enhance Nurr1 SUMOylation. A SUMOylation-deficient Nurr1 mutant displays higher transcriptional activity than the wild type Nurr1 only in promoters harboring more than one Nurr1 response element. Furthermore, lysine 91, the major target of Nurr1 SUMOylation is contained in a canonical synergy control motif, indicating that SUMO-2 posttranslational modification of Nurr1 regulates its transcriptional synergy in complex promoters. In conclusion, PIASγ can exert two types of negative regulations over Nurr1. On one hand, PIASγ limits Nurr1 transactivation in complex promoters by SUMOylating its lysine 91. On the other hand, PIASγ fully represses Nurr1 transactivation through a direct interaction, independently of its E3-ligase activity.


Subject(s)
Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Protein Inhibitors of Activated STAT/physiology , Small Ubiquitin-Related Modifier Proteins/metabolism , Transcription, Genetic , Blotting, Western , Cell Line , Humans , Immunoprecipitation , Microscopy, Confocal
3.
World J Gastroenterol ; 13(22): 3071-9, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17589922

ABSTRACT

AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression. METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured. RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis. CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.


Subject(s)
Apoptosis , Liver Diseases/metabolism , Liver Diseases/pathology , Phosphoproteins/metabolism , Adenoviridae/genetics , Alkaline Phosphatase/blood , Animals , CHO Cells , Cell Line , Chemical and Drug Induced Liver Injury , Chenodeoxycholic Acid , Cholesterol/metabolism , Cricetinae , Cricetulus , Disease Models, Animal , Gene Expression Regulation , Humans , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Phenotype , Phosphoproteins/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...