Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
An. pediatr. (2003. Ed. impr.) ; 100(3): 195-201, Mar. 2024. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-231529

ABSTRACT

Se examina el uso de la inteligencia artificial (IA) en el campo de la atención a la salud pediátrica dentro del marco de la «Medicina de las 7P» (Predictiva, Preventiva, Personalizada, Precisa, Participativa, Periférica y Poliprofesional). Se destacan diversas aplicaciones de la IA en el diagnóstico, el tratamiento y el control de enfermedades pediátricas, así como su papel en la prevención y en la gestión eficiente de los recursos médicos con su repercusión en la sostenibilidad de los sistemas públicos de salud. Se presentan casos de éxito de la aplicación de la IA en el ámbito pediátrico y se hace un gran énfasis en la necesidad de caminar hacia la Medicina de las 7P. La IA está revolucionando la sociedad en general ofreciendo un gran potencial para mejorar significativamente el cuidado de la salud en pediatría.(AU)


This article examines the use of artificial intelligence (AI) in the field of paediatric care within the framework of the 7P medicine model (Predictive, Preventive, Personalized, Precise, Participatory, Peripheral and Polyprofessional). It highlights various applications of AI in the diagnosis, treatment and management of paediatric diseases as well as the role of AI in prevention and in the efficient management of health care resources and the resulting impact on the sustainability of public health systems. Successful cases of the application of AI in the paediatric care setting are presented, placing emphasis on the need to move towards a 7P health care model. Artificial intelligence is revolutionizing society at large and has a great potential for significantly improving paediatric care.(AU)


Subject(s)
Humans , Artificial Intelligence , Disease Prevention , Technological Development , Precision Medicine , Personnel Management , Pediatrics , Health Planning Councils
2.
An Pediatr (Engl Ed) ; 100(3): 195-201, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461129

ABSTRACT

This article examines the use of artificial intelligence (AI) in the field of paediatric care within the framework of the 7P medicine model (Predictive, Preventive, Personalized, Precise, Participatory, Peripheral and Polyprofessional). It highlights various applications of AI in the diagnosis, treatment and management of paediatric diseases as well as the role of AI in prevention and in the efficient management of health care resources and the resulting impact on the sustainability of public health systems. Successful cases of the application of AI in the paediatric care setting are presented, placing emphasis on the need to move towards a 7P health care model. Artificial intelligence is revolutionizing society at large and has a great potential for significantly improving paediatric care.


Subject(s)
Artificial Intelligence , Humans , Child
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768951

ABSTRACT

The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Drug Delivery Systems , Glioblastoma/drug therapy , Machine Learning , Nanoparticles , Databases, Chemical , Databases, Pharmaceutical , Drug Carriers/administration & dosage , Drug Design , Drug Screening Assays, Antitumor , Humans , Nanoparticles/administration & dosage , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...