Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Elife ; 122024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884443

ABSTRACT

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.


Subject(s)
Chitin , Chitinases , Molecular Dynamics Simulation , Chitinases/metabolism , Chitinases/chemistry , Animals , Hydrogen-Ion Concentration , Mice , Chitin/metabolism , Chitin/chemistry , Protein Conformation , Crystallography, X-Ray , Protein Binding , Ligands , Kinetics , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Models, Molecular
2.
R Soc Open Sci ; 11(3): 231386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545613

ABSTRACT

The presence of intra-specific acoustic communication in diurnal butterflies is not well established. Here, we examined the function of the tympanal ear (Vogel's organ, VO) in the seasonally polyphenic butterfly Bicyclus anynana in the context of sexual signalling. We investigated how the VO and the flanking enlarged veins, which are suggested sound resonance chambers, scale with wing size across sexes and seasonal forms, and how disruptions to the VO alter courtship behaviour and mating outcomes. We found that males have VOs similar in size to females despite having smaller wings, and dry season (DS) male cubital and anal veins do not scale with the wing size. This suggests that the VO plays an important role in males and that cubital and anal veins in DS males may be tuned to amplify specific sound frequencies. Behavioural assays performed with deafened and hearing males of different seasonal forms, in pair and triad settings, showed that deafened DS males, but not wet season males, experienced lower mating success relative to their hearing counterparts. Our study documents a novel function for the wing tympanal membrane in mediating courtship and mating outcomes in diurnal butterflies.

3.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37398339

ABSTRACT

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

4.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Article in English | MEDLINE | ID: mdl-37651466

ABSTRACT

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Subject(s)
Coronavirus Papain-Like Proteases , SARS-CoV-2 , Virus Replication , Animals , Humans , Mice , Alanine , Antiviral Agents , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism
5.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37131711

ABSTRACT

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the therapeutic potential of Mac1 inhibition, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wildtype. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, N40D replicated at >1000-fold lower levels compared to the wildtype virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection and showed no signs of lung pathology. Our data validate the SARS-CoV-2 NSP3 Mac1 domain as a critical viral pathogenesis factor and a promising target to develop antivirals.

6.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598939

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Crystallography , Pandemics , Ligands , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
7.
Protein Sci ; 31(9): e4391, 2022 09.
Article in English | MEDLINE | ID: mdl-36040268

ABSTRACT

In their recent commentary in Protein Science, Jaskolski et al. analyzed three randomly picked diffraction data sets from fragment-screening group depositions from the PDB and, based on that, they claimed that such data are principally problematic. We demonstrate here that if such data are treated properly, none of the proclaimed criticisms persist.


Subject(s)
Proteins , Crystallography, X-Ray , Ligands , Proteins/chemistry
8.
bioRxiv ; 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35794891

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-497816

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 [A] resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1. Significance StatementSARS-CoV-2 encodes a viral macrodomain protein (Mac1) that hydrolyzes ribo-adenylate marks on viral proteins, disrupting the innate immune response to the virus. Catalytic mutations in the enzyme make the related SARS-1 virus less pathogenic and non-lethal in animals, suggesting that Mac1 will be a good antiviral target. However, no potent inhibitors of this protein class have been described, and pharmacologically the enzyme remains an orphan. Here, we computationally designed potent inhibitors of Mac1, determining 150 inhibitor-enzyme structures to ultra-high resolution by crystallography. In silico fragment linking and molecular docking of > 450 million virtual compounds led to inhibitors with submicromolar activity. These molecules may template future drug discovery efforts against this crucial but understudied viral target.

10.
Sci Adv ; 8(21): eabo5083, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622909

ABSTRACT

The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

11.
bioRxiv ; 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35169801

ABSTRACT

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

12.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169073

ABSTRACT

Butterfly eyespots are beautiful novel traits with an unknown developmental origin. Here we show that eyespots likely originated via cooption of parts of an ancestral appendage gene-regulatory network (GRN) to novel locations on the wing. Using comparative transcriptome analysis, we show that eyespots cluster most closely with antennae, relative to multiple other tissues. Furthermore, three genes essential for eyespot development, Distal-less (Dll), spalt (sal), and Antennapedia (Antp), share similar regulatory connections as those observed in the antennal GRN. CRISPR knockout of cis-regulatory elements (CREs) for Dll and sal led to the loss of eyespots, antennae, legs, and also wings, demonstrating that these CREs are highly pleiotropic. We conclude that eyespots likely reused an ancient GRN for their development, a network also previously implicated in the development of antennae, legs, and wings.


Subject(s)
Body Patterning/genetics , Gene Regulatory Networks/genetics , Pigmentation/genetics , Animals , Arthropod Antennae/growth & development , Biological Evolution , Butterflies/embryology , Butterflies/genetics , Evolution, Molecular , Extremities/growth & development , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Phenotype , Wings, Animal/growth & development
13.
Preprint in English | bioRxiv | ID: ppbiorxiv-479477

ABSTRACT

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

14.
Cartilage ; 13(1): 19476035211072213, 2022.
Article in English | MEDLINE | ID: mdl-35073769

ABSTRACT

OBJECTIVE: The purpose of this study was to determine the safety and efficacy of hypothermically stored amniotic membrane (HSAM) for the treatment of cartilage lesions of the knee using imaging, patient-reported outcomes (PROs), second-look arthroscopy, and histology. Patients were treated with HSAM and followed for 2 years. DESIGN: Subjects with focal chondral lesions of the femur (International Cartilage Repair Society grade 3-4) were enrolled in this single-arm prospective study. Standard of care imaging was completed. PROs, including the Knee Injury and Osteoarthritis Outcome Score (KOOS), Marx Activity Scale, and Visual Analog Scale (VAS), were collected at baseline and at 3, 6, 12, 18, and 24 months. Three subjects underwent an optional arthroscopy and biopsy of the repair at 24 months. RESULTS: Ten subjects were enrolled and completed the study. At 24 months, KOOS Sports & Recreation improved 173.3% and Quality of Life improved 195.3% from baseline. Marx Activity Scale increased 266.8% from 12 to 24 months. VAS scores improved 84.8% and 81.0% from baseline to 24 months for average and maximum pain. Modified Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scoring showed that 7 of 10 subjects had complete defect repair and filling by 24 months. Biopsy staining for collagen II revealed integration and remodeling of HSAM into a mix of hyaline-like cartilage and fibrocartilage matrix. CONCLUSION: This study provides evidence supporting the safety and efficacy of HSAM for treating symptomatic cartilage lesions. Subjects showed a high degree of defect fill and integration with the native cartilage and reported improvements in pain and function post-treatment. Results provide important original data for future clinical trials.


Subject(s)
Cartilage, Articular , Quality of Life , Amnion , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/injuries , Cartilage, Articular/surgery , Follow-Up Studies , Humans , Pain/etiology , Prospective Studies , Transplantation, Autologous
15.
Sci Adv ; 7(16)2021 04.
Article in English | MEDLINE | ID: mdl-33853786

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Subject(s)
Catalytic Domain/physiology , Protein Binding/physiology , Viral Nonstructural Proteins/metabolism , Catalytic Domain/genetics , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Docking Simulation , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , COVID-19 Drug Treatment
16.
J Appl Microbiol ; 131(6): 2640-2658, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33665941

ABSTRACT

Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non-typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime-boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials.


Subject(s)
Salmonella Infections , Salmonella Vaccines , Typhoid Fever , Humans , Salmonella/genetics , Salmonella Infections/prevention & control , Salmonella typhi , Vaccines, Attenuated
17.
bioRxiv ; 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33269349

ABSTRACT

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

18.
Plast Reconstr Surg ; 146(5): 673e-679e, 2020 11.
Article in English | MEDLINE | ID: mdl-33136968

ABSTRACT

BACKGROUND: Physicians, especially plastic surgeons, are underrepresented in hospital leadership. As such, the steps an aspiring plastic surgeon should take toward assuming a high-level administrative role remain unclear. The authors aim to profile the chief executive officers and surgeons-in-chief at top-ranked U.S. hospitals with the goal of better characterizing the attributes of institutional leaders. METHODS: Chief executive officers and surgeons-in-chief at top-ranking hospitals in the 2019 to 2020 U.S. News and World Report "Best Hospitals Honor Roll" were included in this study. For each leader, sex, title, degrees, years of experience, total number of publications, practice specialty (for physician leaders), and previous leadership roles in national societies were reviewed. Descriptive statistical analyses were performed. RESULTS: A total of 99 leadership positions at 66 institutions were included. Of these, 67 were chief executive officers and 32 were surgeons-in-chief. Overall, 28 of 67 chief executive officers (42 percent) were physicians-23 nonsurgeons and five surgeons. Of all surgeon executives, only two were plastic surgeons, and both were surgeons-in-chief. The "average" physician-chief executive officer had 24 years of experience, no M.B.A., over 100 publications, zero to one fellowship, and was involved in national leadership. There was no difference in professional qualifications (defined as years of experience, business training, number of publications and fellowships, and leadership positions) between nonsurgeon- and surgeon-chief executive officers, or between plastic surgeons and other surgeons in leadership positions. CONCLUSIONS: Despite possessing adequate qualifications, plastic surgeons are underrepresented in American health care institutional leadership roles. Aspiring plastic surgeon leaders should lean on their peer credibility and experience delivering patient-centered care to succeed in leadership roles.


Subject(s)
Chief Executive Officers, Hospital/statistics & numerical data , Leadership , Physician Executives/statistics & numerical data , Surgeons/statistics & numerical data , Surgery, Plastic/statistics & numerical data , Humans , Motivation , Surgeons/psychology , Surgery, Plastic/psychology , United States
19.
Preprint in English | bioRxiv | ID: ppbiorxiv-393405

ABSTRACT

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

20.
Proc Natl Acad Sci U S A ; 116(42): 21012-21021, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31575743

ABSTRACT

Insecticides allow control of agricultural pests and disease vectors and are vital for global food security and health. The evolution of resistance to insecticides, such as organophosphates (OPs), is a serious and growing concern. OP resistance often involves sequestration or hydrolysis of OPs by carboxylesterases. Inhibiting carboxylesterases could, therefore, restore the effectiveness of OPs for which resistance has evolved. Here, we use covalent virtual screening to produce nano-/picomolar boronic acid inhibitors of the carboxylesterase αE7 from the agricultural pest Lucilia cuprina as well as a common Gly137Asp αE7 mutant that confers OP resistance. These inhibitors, with high selectivity against human acetylcholinesterase and low to no toxicity in human cells and in mice, act synergistically with the OPs diazinon and malathion to reduce the amount of OP required to kill L. cuprina by up to 16-fold and abolish resistance. The compounds exhibit broad utility in significantly potentiating another OP, chlorpyrifos, against the common pest, the peach-potato aphid (Myzus persicae). These compounds represent a solution to OP resistance as well as to environmental concerns regarding overuse of OPs, allowing significant reduction of use without compromising efficacy.


Subject(s)
Insecticide Resistance/genetics , Insecticides/pharmacology , Acetylcholinesterase/genetics , Animals , Aphids/drug effects , Carboxylic Ester Hydrolases/genetics , Cell Line , Diazinon/pharmacology , Female , HEK293 Cells , Humans , Malathion/pharmacology , Mice , Mice, Inbred C57BL , Organophosphates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...