Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(5): 630-645, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36912782

ABSTRACT

Antitumor immunity can be hampered by immunosuppressive mechanisms in the tumor microenvironment, including recruitment of arginase (ARG) expressing myeloid cells that deplete l-arginine essential for optimal T-cell and natural killer cell function. Hence, ARG inhibition can reverse immunosuppression enhancing antitumor immunity. We describe AZD0011, a novel peptidic boronic acid prodrug to deliver an orally available, highly potent, ARG inhibitor payload (AZD0011-PL). We demonstrate that AZD0011-PL is unable to permeate cells, suggesting that this compound will only inhibit extracellular ARG. In vivo, AZD0011 monotherapy leads to arginine increases, immune cell activation, and tumor growth inhibition in various syngeneic models. Antitumor responses increase when AZD0011 is combined with anti-PD-L1 treatment, correlating with increases in multiple tumor immune cell populations. We demonstrate a novel triple combination of AZD0011, anti-PD-L1, and anti-NKG2A, and combination benefits with type I IFN inducers, including polyI:C and radiotherapy. Our preclinical data demonstrate AZD0011's ability to reverse tumor immunosuppression and enhance immune stimulation and antitumor responses with diverse combination partners providing potential strategies to increase immuno-oncology therapies clinically.


Subject(s)
Arginase , T-Lymphocytes , Humans , Cell Line, Tumor , Immunosuppression Therapy , Immune Tolerance , Tumor Microenvironment
2.
Commun Biol ; 4(1): 112, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495510

ABSTRACT

Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development.


Subject(s)
Antineoplastic Agents , Dendrimers , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Dendrimers/therapeutic use , Dogs , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Rats , Rats, Wistar , Therapeutic Index , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors
3.
Xenobiotica ; 45(3): 270-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25335570

ABSTRACT

1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Acetaminophen/administration & dosage , Acetaminophen/blood , Acetaminophen/pharmacokinetics , Animals , Chemical and Drug Induced Liver Injury/pathology , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Female , Humans , Macaca fascicularis , Male , Mass Spectrometry , Metabolomics , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...