Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 884: 163840, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142038

ABSTRACT

Dissolved organic carbon (DOC) and particulate organic carbon (POC) play a fundamental role in biogeochemical cycles of freshwater ecosystems. However, the lack of readily available distributed models for carbon export has limited the effective management of organic carbon fluxes from soils, through river networks and to receiving marine waters. We develop a spatially semi-distributed mass balance modeling approach to estimate organic carbon flux at a sub-basin and basin scales, using commonly available data, to allow stakeholders to explore the impacts of alternative river basin management scenarios and climate change on riverine DOC and POC dynamics. Data requirements, related to hydrological, land-use, soil and precipitation characteristics are easily retrievable from international and national databases, making it appropriate for data-scarce basins. The model is built as an open-source plugin for QGIS and can be easily integrated with other basin scale decision support models on nutrient and sediment export. We tested the model in Piave river basin, in northeast Italy. Results show that the model reproduces spatial and temporal changes in DOC and POC fluxes in relation to changes in precipitation, basin morphology and land use across different sub-basins. For example, the highest DOC export were associated with both urban and forest land use classes and during months of elevated precipitation. We used the model to evaluate alternative land use scenarios and the impact of climate on basin level carbon export to Mediterranean.


Subject(s)
Carbon , Ecosystem , Carbon/analysis , Environmental Monitoring , Rivers , Fresh Water , Soil , Dust , Dissolved Organic Matter
2.
Sci Total Environ ; 857(Pt 3): 159624, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36280077

ABSTRACT

Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications in the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used six large scale mesocosms to simulate future ocean scenarios of high plastic concentration. Each mesocosm was filled with 3 m3 of seawater from the oligotrophic Sea of Crete, in the Eastern Mediterranean Sea. A known amount of standard polystyrene microbeads of 30 µm diameter was added to three replicate mesocosms, while maintaining the remaining three as plastic-free controls. Over the course of a 12-day experiment, we explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of carbohydrate-like and proteinaceous marine gel compounds in the sea-surface microlayer. Importantly, this resulted in a ∼3 % reduction in the concentration of dissolved CO2 in the underlying water. This reduction was associated to both direct and indirect impacts of microplastic pollution on the uptake of CO2 within the marine carbon cycle, by modifying the biogenic composition of the sea's boundary layer with the atmosphere.


Subject(s)
Carbon Dioxide , Water Pollutants, Chemical , Carbon Dioxide/analysis , Microplastics , Plastics , Seawater/chemistry , Water/analysis , Mediterranean Sea , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 56(22): 15638-15649, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36302504

ABSTRACT

Understanding residence times of plastic in the ocean is a major knowledge gap in plastic pollution studies. Observations report a large mismatch between plastic load estimates from worldwide production and disposal and actual plastics floating at the sea surface. Surveys of the water column, from the surface to the deep sea, are rare. Most recent work, therefore, addressed the "missing plastic" question using modeling or laboratory approaches proposing biofouling and degradation as the main removal processes in the ocean. Through organic matrices, plastic can affect the biogeochemical and microbial cycling of carbon and nutrients. For the first time, we provide in situ measured vertical fluxes of microplastics deploying drifting sediment traps in the North Atlantic Gyre from 50 m down to 600 m depth, showing that through biogenic polymers plastic can be embedded into rapidly sinking particles also known as marine snow. We furthermore show that the carbon contained in plastic can represent up to 3.8% of the total downward flux of particulate organic carbon. Our results shed light on important pathways regulating the transport of microplastics in marine systems and on potential interactions with the marine carbon cycle, suggesting microplastic removal through the "biological plastic pump".


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Carbon , Membrane Transport Proteins , Environmental Monitoring , Water Pollutants, Chemical/analysis , Atlantic Ocean
4.
Environ Pollut ; 268(Pt A): 115598, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33158618

ABSTRACT

One of the major challenges in understanding the dynamics of the ocean's health and functioning is the potential impact of the increasing presence of plastic. Besides the verified and macroscopic effects on marine wildlife and habitats, micro and macroplastics offer potential sites for microbial activity and chemical leaching. Most marine plastic is found initially in the upper meters of the water column, where fundamental biogeochemical processes drive marine productivity and food web dynamics. However, recent findings show a continuum of potential effects of these new marine components on carbon, nutrients and microbial processes. In the present analysis, we develop a common ground between these studies and we identify knowledge gaps where new research efforts should be focused, to better determine potential feedbacks of plastics on the carbon biogeochemistry of a changing ocean.


Subject(s)
Carbon , Plastics , Ecosystem , Environmental Pollution , Food Chain , Oceans and Seas
5.
Sci Rep ; 8(1): 14635, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279474

ABSTRACT

About 5 trillion plastic particles are present in our oceans, from the macro to the micro size. Like any other aquatic particulate, plastics and microplastics can create a micro-environment, within which microbial and chemical conditions differ significantly from the surrounding water. Despite the high and increasing abundance of microplastics in the ocean, their influence on the transformation and composition of marine organic matter is largely unknown. Chromophoric dissolved organic matter (CDOM) is the photo-reactive fraction of the marine dissolved organic matter (DOM) pool. Changes in CDOM quality and quantity have impacts on marine microbial dynamics and the underwater light environment. One major source of CDOM is produced by marine bacteria through their alteration of pre-existing DOM substrates. In a series of microcosm experiments in controlled marine conditions, we explored the impact of microplastics on the quality and quantity of microbial CDOM. In the presence of microplastics we observed an increased production of CDOM with changes in its molecular weight, which resulted from either an increased microbial CDOM production or an enhanced transformation of DOM from lower to higher molecular weight CDOM. Our results point to the possibility that marine microplastics act as localized hot spots for microbial activity, with the potential to influence marine carbon dynamics.


Subject(s)
Diatoms/metabolism , Oceans and Seas , Plastics/chemistry , Polystyrenes/chemistry , Water Microbiology , Water/analysis , Carbon/metabolism
6.
Sci Rep ; 6: 29465, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435531

ABSTRACT

The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

7.
PLoS One ; 9(6): e99228, 2014.
Article in English | MEDLINE | ID: mdl-24941307

ABSTRACT

Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5-10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean.


Subject(s)
Carbon Dioxide/physiology , Cyanobacteria/growth & development , Water Microbiology , Bacterial Proteins/metabolism , Carbon Dioxide/chemistry , Cyanobacteria/metabolism , Hydrogen-Ion Concentration , Leucyl Aminopeptidase/metabolism , Norway , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology
8.
J Photochem Photobiol B ; 102(2): 132-9, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21078559

ABSTRACT

The impact of photodegradation and mixing processes on the optical properties of dissolved organic matter (DOM) was examined using a distribution of absorption spectral slopes and fluorescence measurements in two Argentine lakes. By examining the variability of the absorption spectral slopes throughout the ultraviolet and visible wavelengths, it was possible to determine which wavelength intervals were most sensitive to dominant loss processes. For DOM photodegradation, results show that increases in the absorption spectral slope between 265 and 305 nm were highly sensitive to increased exposure to solar ultraviolet radiation. A slightly larger wavelength range (265-340 nm) was found to be influenced when both mixing and photodegradation processes were considered, in terms DOM residence time, DOM absorption and UV diffuse attenuation coefficients. This same interval of spectral slopes (265-340 nm) was found to highly correlate with changes in fluorescence emission/excitation in wavelengths that are typically associated with terrestrial humic-like DOM. The identification of specific wavelength intervals, rather than the use of standard wavelength intervals or ratios, improved our ability to identify the dominant dissolved organic matter (humic-like) and major loss mechanisms (photodegradation) in these lakes.


Subject(s)
Fresh Water/chemistry , Humic Substances/analysis , Organic Chemicals/chemistry , Absorption , Environmental Monitoring , Photolysis , Spectrometry, Fluorescence , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...