Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 32: 127661, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33160023

ABSTRACT

We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious ß-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (R) t-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials. Ibrexafungerp displayed significantly improved oral efficacy in murine infection models, making it a superior candidate for clinical development as an oral treatment for Candida and Aspergillus infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Candida albicans/drug effects , Glycosides/chemistry , Triterpenes/chemistry , beta-Glucans/metabolism , Administration, Oral , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Candidiasis/drug therapy , Disease Models, Animal , Glycosides/pharmacokinetics , Glycosides/pharmacology , Glycosides/therapeutic use , Half-Life , Mice , Structure-Activity Relationship , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/therapeutic use
2.
Bioorg Med Chem Lett ; 30(17): 127357, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738971

ABSTRACT

Our previously reported efforts to produce an orally active ß-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy. However, replacement of the isopropyl alpha amino substituent with a t-butyl, improved oral exposure while maintaining antifungal activity. These two structural modifications produced MK-5204, which demonstrated broad spectrum activity against Candida species and robust oral efficacy in a murine model of disseminated Candidiasis without the N-dealkylation liability observed for the previous lead.


Subject(s)
Antifungal Agents/chemistry , Triazoles/chemistry , beta-Glucans/metabolism , Administration, Oral , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida/drug effects , Candidiasis/drug therapy , Disease Models, Animal , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glycosides/chemistry , Half-Life , Mice , Microbial Sensitivity Tests , Stereoisomerism , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/pharmacology , Triazoles/therapeutic use , Triterpenes/chemistry , beta-Glucans/chemistry
3.
Article in English | MEDLINE | ID: mdl-29866878

ABSTRACT

The World Health Organization has identified antimicrobial resistance as a global public health threat since the prevalence and spread of antibiotic resistance among bacterial pathogens worldwide are staggering. Carbapenems, such as imipenem and meropenem, have been used to treat multidrug-resistant bacteria; however, since the development of resistance to carbapenems, ß-lactam antibiotics in combination with ß-lactamase inhibitors (BLI) has been one of the most successful strategies to enhance the activity of ß-lactam antibiotics. Relebactam (REL) is a new BLI which has been found to inhibit class A and class C ß-lactamases in vitro REL has been reported to restore imipenem's activity against both imipenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae Reported here are the in vivo efficacy studies of the imipenem-cilastatin (IMI)-REL combination in mouse models of disseminated and pulmonary infection caused by imipenem-resistant clinical isolates of P. aeruginosa and K. pneumoniae The combination was also evaluated in a P. aeruginosa delayed pulmonary model of infection. IMI-REL was found to be effective in the disseminated model of infection with log reduction in P. aeruginosa CFU of 3.73, 3.13, and 1.72 at REL doses of 40, 20, and 10 mg/kg, respectively. For K. pneumoniae, log reductions in CFU of 2.36, 3.06, and 2.29 were reported at REL doses of 80, 40, and 20 mg/kg, respectively. The combination was less effective in the delayed pulmonary model than in the immediate pulmonary model; however, overall REL was found to be effective against these imipenem-resistant strains.


Subject(s)
Azabicyclo Compounds/therapeutic use , Cilastatin, Imipenem Drug Combination/therapeutic use , Animals , Cilastatin/therapeutic use , Drug Resistance, Multiple, Bacterial , Female , Imipenem/therapeutic use , Mice , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , beta-Lactamase Inhibitors/therapeutic use
4.
Cell Chem Biol ; 24(5): 576-588.e6, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28434876

ABSTRACT

Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.


Subject(s)
Flavin Mononucleotide/genetics , Homeostasis/drug effects , Pyrimidines/pharmacology , Riboflavin/analogs & derivatives , Riboflavin/metabolism , Riboswitch/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Base Sequence , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Mice , Models, Molecular , Molecular Targeted Therapy , Protein Conformation , Riboflavin/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/physiology
5.
Bioorg Med Chem Lett ; 25(24): 5813-8, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26542966

ABSTRACT

The clinical success of the echinocandins, which can only be administered parentally, has validated ß-1,3-glucan synthase (GS) as an antifungal target. Semi-synthetic modification of enfumafungin, a triterpene glycoside natural product, was performed with the aim of producing a new class of orally active GS inhibitors. Replacement of the C2 acetoxy moiety with various heterocycles did not improve GS or antifungal potency. However, replacement of the C3 glycoside with an aminoether moiety dramatically improved oral pharmacokinetic (PK) properties while maintaining GS and antifungal potency. Installing an aminotetrazole at C2 in conjunction with an N-alkylated aminoether at C3 produced derivatives with significantly improved GS and antifungal potency that exhibited robust oral efficacy in a murine model of disseminated candidiasis.


Subject(s)
Antifungal Agents/chemistry , Glycosides/chemistry , Triterpenes/chemistry , beta-Glucans/chemistry , Administration, Oral , Animals , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/veterinary , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Half-Life , Mice , Microbial Sensitivity Tests , Structure-Activity Relationship , Terpenes/chemistry , beta-Glucans/pharmacokinetics , beta-Glucans/therapeutic use
6.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26416753

ABSTRACT

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Subject(s)
Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA, Bacterial/chemistry , RNA, Bacterial/drug effects , Riboswitch/drug effects , Animals , Aptamers, Nucleotide/chemistry , Bacteria/cytology , Bacteria/drug effects , Bacteria/growth & development , Base Sequence , Crystallography, X-Ray , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Flavin Mononucleotide/metabolism , Gene Expression Regulation, Bacterial/drug effects , Heat-Shock Proteins/genetics , Intramolecular Transferases/genetics , Ligands , Mice , Mice, Inbred DBA , Models, Molecular , Molecular Sequence Data , Pyrimidines/isolation & purification , Pyrimidines/therapeutic use , RNA, Bacterial/genetics , Reproducibility of Results , Riboflavin/biosynthesis , Riboswitch/genetics , Substrate Specificity
7.
Antimicrob Agents Chemother ; 56(9): 4662-70, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710113

ABSTRACT

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all ß-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of ß-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to ß-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with ß-lactams by preventing the signal peptidase-mediated secretion of proteins required for ß-lactam resistance. Combinations of SpsB inhibitors and ß-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to ß-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Depsipeptides/pharmacology , Glycopeptides/pharmacology , Glycosides/pharmacology , Lipopeptides/pharmacology , Membrane Proteins/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Oligopeptides/pharmacology , Staphylococcal Infections/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Biphenyl Compounds/chemical synthesis , Depsipeptides/isolation & purification , Drug Synergism , Drug Therapy, Combination , Female , Glycopeptides/chemical synthesis , Glycopeptides/isolation & purification , Glycosides/isolation & purification , Humans , Lipopeptides/isolation & purification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Multigene Family , Oligopeptides/chemical synthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Staphylococcal Infections/microbiology , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
8.
Antimicrob Agents Chemother ; 55(7): 3491-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21518846

ABSTRACT

Neonatal candidiasis is an increasingly common occurrence causing significant morbidity and mortality and a higher risk of dissemination to the central nervous system (CNS) than that seen with older patients. The current understanding of optimal antifungal therapy in this setting is limited. We have developed a model of disseminated candidiasis with CNS involvement in juvenile mice to assess the efficacy of the echinocandin caspofungin relative to amphotericin B (AmB). Juvenile mice were inoculated intravenously with 5.64 × 10(4) CFU of Candida albicans MY1055. Treatment with caspofungin at 1, 2, 4, and 8 mg/kg of body weight/day, AmB at 1 mg/kg/day, or a vehicle control (VC) was initiated 30 h after infection and continued for 7 days. Pharmacokinetic parameters for caspofungin were also determined. Culture and histology showed evidence of disseminated candidiasis with multifocal encephalitis at the start of antifungal therapy. Survival was 100% in all treated groups, while mortality was 100% in the VC by day 11 after infection. By day 5, all mice in the caspofungin treatment (four doses) groups showed reductions in kidney and brain burden relative to the VC, while AmB treatment reduced kidney burden but gave no reduction of brain fungal burden. Systemic levels of caspofungin were similar in infected and uninfected mice, while brain levels were higher in infected animals. In this juvenile mouse model, caspofungin demonstrated dose-dependent activity, equivalent to or better than that of AmB at 1 mg/kg, against disseminated candidiasis with CNS involvement.


Subject(s)
Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Central Nervous System Fungal Infections/drug therapy , Echinocandins/therapeutic use , Animals , Antifungal Agents/pharmacokinetics , Brain/drug effects , Brain/microbiology , Caspofungin , Echinocandins/pharmacokinetics , Kidney/drug effects , Kidney/microbiology , Lipopeptides , Mice
9.
Proc Natl Acad Sci U S A ; 104(18): 7612-6, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17456595

ABSTRACT

Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, beta-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 microg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 microg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , Aminophenols/pharmacology , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Polycyclic Compounds/pharmacology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Aminophenols/chemistry , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Microbial Viability/drug effects , Molecular Structure , Polycyclic Compounds/chemistry
10.
Nature ; 441(7091): 358-61, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16710421

ABSTRACT

Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of beta-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Acetamides/pharmacology , Acetamides/toxicity , Adamantane , Aminobenzoates , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Aminoglycosides/toxicity , Anilides , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Apoproteins/chemistry , Apoproteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Linezolid , Lipids/biosynthesis , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Oxazolidinones/pharmacology , Oxazolidinones/toxicity , Streptomyces/metabolism , Substrate Specificity
11.
J Nat Prod ; 69(3): 377-80, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16562839

ABSTRACT

Fatty acids are essential for bacterial growth and viability, with the type II fatty acid synthesis (FAS II) pathway being a potential antibacterial target. A new, selective, and highly sensitive whole cell-based antisense strategy has been designed to screen for natural product inhibitors of FabH/F of the FAS II pathway using a high-throughput two-plate agar-based differential sensitivity assay (FabF(2)p). An antisense assay along with the FASII enzyme prepared from Staphylococcus aureus was used for bioactivity-guided fractionation, leading to the isolation of phomallenic acids A-C (1-3) from a leaf litter fungus identified as Phoma sp. Compounds 1-3 exhibited minimum detection concentrations (MDC) of 0.63, 0.31, and 0.15 microg/mL in the FabF(2P) assay, IC(50) values of 22, 3.4, and 0.77 microg/mL in the FASII enzyme assay, and minimum inhibitory concentrations (MIC) of 250, 7.8, and 3.9 microg/mL, respectively, against wild-type S. aureus. Phomallenic acid C (3), the analogue with the longest chain, exhibited the best overall activity within the phomallenic acids obtained and was superior to cerulenin and thiolactomycin, the two most studied and commonly used FabF inhibitors.


Subject(s)
Acetyltransferases/antagonists & inhibitors , Alkadienes , Anti-Bacterial Agents , Ascomycota/chemistry , Fatty Acid Synthases/antagonists & inhibitors , Multienzyme Complexes/antagonists & inhibitors , Staphylococcus aureus/drug effects , Alkadienes/chemistry , Alkadienes/isolation & purification , Alkadienes/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Fatty Acid Synthase, Type II , Fatty Acids/biosynthesis , France , Methicillin Resistance , Microbial Sensitivity Tests , Molecular Structure , Thiophenes/pharmacology
12.
Antimicrob Agents Chemother ; 50(2): 519-26, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16436705

ABSTRACT

Condensing enzymes are essential in type II fatty acid synthesis and are promising targets for antibacterial drug discovery. Recently, a new approach using a xylose-inducible plasmid to express antisense RNA in Staphylococcus aureus has been described; however, the actual mechanism was not delineated. In this paper, the mechanism of decreased target protein production by expression of antisense RNA was investigated using Northern blotting. This revealed that the antisense RNA acts posttranscriptionally by targeting mRNA, leading to 5' mRNA degradation. Using this technology, a two-plate assay was developed in order to identify FabF/FabH target-specific cell-permeable inhibitors by screening of natural product extracts. Over 250,000 natural product fermentation broths were screened and then confirmed in biochemical assays, yielding a hit rate of 0.1%. All known natural product FabH and FabF inhibitors, including cerulenin, thiolactomycin, thiotetromycin, and Tü3010, were discovered using this whole-cell mechanism-based screening approach. Phomallenic acids, which are new inhibitors of FabF, were also discovered. These new inhibitors exhibited target selectivity in the gel elongation assay and in the whole-cell-based two-plate assay. Phomallenic acid C showed good antibacterial activity, about 20-fold better than that of thiolactomycin and cerulenin, against S. aureus. It exhibited a spectrum of antibacterial activity against clinically important pathogens including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Haemophilus influenzae.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/enzymology , Biological Products/chemistry , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/isolation & purification , Drug Design , Fatty Acids/biosynthesis , Microbial Sensitivity Tests , RNA, Antisense/pharmacology , RNA, Messenger/chemistry , Structure-Activity Relationship
13.
J Nat Prod ; 68(9): 1437-40, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16180833

ABSTRACT

Liver X receptors (LXR) are nuclear hormone receptors that play a critical role in cholesterol homeostasis. They regulate the expression of the ABCA1 gene, which mediates the efflux of cholesterol out of cells. LXR agonists are expected to increase cholesterol efflux, lower LDL, and raise HDL levels. Screening of a natural product library of microbial extracts using a LXR-SPA binding assay and bioassay-guided fractionation of an active extract of a Streptomyces sp. (MA6657) led to the discovery of two new hexacyclic aromatic ketones, (-)-anthrabenzoxocinone [(-)-ABX (1)], an enantiomer of BE-24566B, and (-)-bischloroanthrabenzoxocinone [(-)-BABX (2)]. The IC50 values of LXRalpha-SPA binding are 2 microM for (-)-ABX and 10 microM for (-)-BABX. This extract was also found to inhibit type II fatty acid synthesis, and its active component, (-)-BABX, was responsible for the majority of the inhibition. All three compounds showed good Gram-positive antibacterial activity (MIC 0.5-2 microg/mL). Details of the isolation, structure elucidation, LXR ligand binding, antibacterial activity, and selectivity of inhibition of 1 and 2 are described.


Subject(s)
Anti-Bacterial Agents/isolation & purification , DNA-Binding Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/isolation & purification , Receptors, Cytoplasmic and Nuclear/metabolism , Streptomyces/chemistry , Anthraquinones/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inhibitory Concentration 50 , Ligands , Liver X Receptors , Molecular Structure , Orphan Nuclear Receptors , Stereoisomerism
14.
J Biol Chem ; 280(2): 1669-77, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15516341

ABSTRACT

Type II fatty acid synthesis (FASII) is essential to bacterial cell viability and is a promising target for the development of novel antibiotics. In the past decade, a few inhibitors have been identified for this pathway, but none of them lend themselves to drug development. To find better inhibitors that are potential drug candidates, we developed a high throughput assay that identifies inhibitors simultaneously against multiple targets within the FASII pathway of most bacterial pathogens. We demonstrated that the inverse t(1/2) value of the FASII enzyme-catalyzed reaction gives a measure of FASII activity. The Km values of octanoyl-CoA and lauroyl-CoA were determined to be 1.1 +/- 0.3 and 10 +/- 2.7 microM in Staphylococcus aureus and Bacillus subtilis, respectively. The effects of free metals and reducing agents on enzyme activity showed an inhibition hierarchy of Zn2+ > Ca2+ > Mn2+ > Mg2+; no inhibition was found with beta-mercaptoethanol or dithiothreitol. We used this assay to screen the natural product libraries and isolated an inhibitor, bischloroanthrabenzoxocinone (BABX) with a new structure. BABX showed IC50 values of 11.4 and 35.3 microg/ml in the S. aureus and Escherichia coli FASII assays, respectively, and good antibacterial activities against S. aureus and permeable E. coli strains with minimum inhibitory concentrations ranging from 0.2 to 0.4 microg/ml. Furthermore, the effectiveness, selectivity, and the in vitro and in vivo correlations of BABX as well as other fatty acid inhibitors were elucidated, which will aid in future drug discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Fatty Acids/biosynthesis , Bacteria/enzymology , Cations, Divalent/pharmacology , Dithiothreitol/pharmacology , Drug Evaluation, Preclinical , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inhibitory Concentration 50 , Kinetics , Mercaptoethanol/pharmacology , Microbial Sensitivity Tests , Sensitivity and Specificity , Substrate Specificity
15.
J Biol Chem ; 278(45): 44424-8, 2003 Nov 07.
Article in English | MEDLINE | ID: mdl-12952956

ABSTRACT

The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cell Division/drug effects , Cytoskeletal Proteins , Naphthols/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Drug Resistance, Microbial , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Fluorescein , Fluorescent Dyes , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Hydrolysis , Kinetics , Microbial Sensitivity Tests , Molecular Structure , Naphthols/chemistry , Naphthols/isolation & purification , Polymers/chemistry , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...