Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 429(6990): 382-8, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15164055

ABSTRACT

Human-chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.


Subject(s)
Chromosomes, Mammalian/genetics , Evolution, Molecular , Pan troglodytes/genetics , Physical Chromosome Mapping , Animals , Chromosomes, Human, Pair 21/genetics , Gene Expression Profiling , Genes/genetics , Genomics , Humans , Mutagenesis/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Sequence Analysis, DNA
3.
Hum Mol Genet ; 10(22): 2557-67, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11709543

ABSTRACT

The X-linked dominant and male-lethal disorder incontinentia pigmenti (IP) is caused by mutations in a gene called NEMO (IKK-gamma). We recently reported the structure of NEMO and demonstrated that most IP patients carry an identical deletion that arises due to misalignment between repeats. Affected male abortuses with the IP deletion had provided clues that a second, incomplete copy of NEMO was present in the genome. We have now identified clones containing this truncated copy (Delta NEMO) and incorporated them into a previously constructed physical contig in distal Xq28. Delta NEMO maps 22 kb distal to NEMO and only contains exons 3-10, confirming our proposed model. A sequence of 26 kb 3' of the NEMO coding sequence is also present in the same position relative to the Delta NEMO locus, bringing the total length of the duplication to 35.5 kb. The LAGE2 gene is also located within this duplicated region, and a similar but unique LAGE1 gene is located just distal to the duplicated loci. Mapping and sequence information indicated that the duplicated regions are in opposite orientation. Analysis of the great apes suggested that the NEMO/LAGE2 duplication occurred after divergence of the lineage leading to present day humans, chimpanzees and gorillas, approximately 10-15 million years ago. Intriguingly, despite this substantial evolutionary history, only 22 single nucleotide differences exist between the two copies over the entire 35.5 kb, making the duplications >99% identical. This high sequence identity and the inverted orientations of the two copies, along with duplications of smaller internal sections within each copy, predispose this region to various genomic alterations. We detected four rearrangements that involved NEMO, Delta NEMO or LAGE1 and LAGE2. The high sequence similarity between the two NEMO/LAGE2 copies may be due to frequent gene conversion, as we have detected evidence of sequence transfer between them. Together, these data describe an unusual and complex genomic region that is susceptible to various types of pathogenic and polymorphic rearrangements, including the recurrent lethal deletion associated with IP.


Subject(s)
Antigens, Neoplasm , Chromosome Aberrations , Gene Duplication , Incontinentia Pigmenti/genetics , Membrane Proteins , Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Animals , Antigens, Surface , Blotting, Southern , Chromosome Inversion , DNA/genetics , DNA/isolation & purification , Female , Gene Order , Humans , I-kappa B Kinase , Incontinentia Pigmenti/pathology , Male , Molecular Sequence Data , Primates , Sequence Deletion , X Chromosome/genetics
4.
Gene ; 271(1): 93-8, 2001 Jun 13.
Article in English | MEDLINE | ID: mdl-11410370

ABSTRACT

NEMO (NFkappaB essential modulator) is a non-catalytic subunit of the cytokine-dependent IkappaB kinase complex that is involved in activation of the transcription factor NFkappaB. The human NEMO gene maps to Xq28 and is arranged head to head with the proximal G6PD gene. Mutations in NEMO have recently been associated with Incontinentia Pigmenti (Smahi et al., Nature 405 (2000) 466), an X-linked dominant disorder. Three alternative transcripts with different non-coding 5' exons (1a, 1b and 1c) of NEMO have been described. In order to identify regulatory elements that control alternative transcription we have established the complete genomic sequence of the murine orthologs Nemo and G6pdx. Sequence comparison suggests the presence of two alternative promoters for NEMO/Nemo. First, a CpG island is shared by both genes driving expression of the NEMO/Nemo transcripts containing exons 1b and 1c in one direction and the housekeeping gene G6PD/G6pdx in the opposite direction. In contrast to human, an additional variant of exon 1c, named 1c+, was identified in several tissues of the mouse. This larger exon utilizes an alternative donor site located 1594 bp within intron 1c. The putative second promoter for NEMO/Nemo transcripts starting with exon 1a is unidirectional, and not associated with a CpG island. Surprisingly, this promoter is located in the second intron of G6PD/G6pdx. It shows very low basal activity and may be involved in stress/time- and/or tissue-dependent expression of NEMO. To our knowledge, an overlapping gene order similar to the G6PD/NEMO complex has not been described before.


Subject(s)
Glucosephosphate Dehydrogenase/genetics , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Conserved Sequence , DNA/chemistry , DNA/genetics , Embryo, Mammalian/metabolism , Exons , Female , Gene Expression , Gene Expression Regulation, Developmental , Genes/genetics , Humans , I-kappa B Kinase , Introns , Male , Mice , Molecular Sequence Data , RNA/genetics , RNA/metabolism , Sequence Analysis, DNA , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...