Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38561173

ABSTRACT

SUMMARY: The Integrated Database of Small Molecules (IDSM) integrates data from small-molecule datasets, making them accessible through the SPARQL query language. Its unique feature is the ability to search for compounds through SPARQL based on their molecular structure. We extended IDSM to enable mass spectra databases to be integrated and searched for based on mass spectrum similarity. As sources of mass spectra, we employed the MassBank of North America database and the In Silico Spectral Database of natural products. AVAILABILITY AND IMPLEMENTATION: The extension is an integral part of IDSM, which is available at https://idsm.elixir-czech.cz. The manual and usage examples are available at https://idsm.elixir-czech.cz/docs/ms. The source codes of all IDSM parts are available under open-source licences at https://github.com/idsm-src.

2.
Chem Sci ; 15(2): 594-608, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179543

ABSTRACT

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically ß-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-ß-sheet or more generally, pro-extended), and VIV(ß), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

3.
J Cheminform ; 15(1): 61, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340506

ABSTRACT

Current biological and chemical research is increasingly dependent on the reusability of previously acquired data, which typically come from various sources. Consequently, there is a growing need for database systems and databases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form, and having two versions of the same data may not be convenient. A solution may be to use a system mapping the relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries coming from the neXtProt project.

4.
Comput Struct Biotechnol J ; 20: 6512-6518, 2022.
Article in English | MEDLINE | ID: mdl-36467577

ABSTRACT

Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels' geometrical and physico-chemical properties influence the transport process. The tunnels are attractive hot spots for protein engineering and drug development. However, studying the ligand binding and unbinding using experimental techniques is challenging, while in silico methods come with their limitations, especially in the case of resource-demanding virtual screening pipelines. Caver Web 1.2 is a new version of the web server combining the capabilities for the detection of protein tunnels with the calculation of the ligand trajectories. The new version of the Caver Web server was expanded with the ability to fetch novel ligands from the Integrated Database of Small Molecules and with the fully automated virtual screening pipeline allowing for the fast evaluation of the predefined set of over 4,300 currently approved drugs. The virtual screening pipeline is accompanied by a comprehensive user interface, making it a viable service for the broader spectrum of companies and the academic user community. The web server is freely available for academic use at https://loschmidt.chemi.muni.cz/caverweb.

5.
Elife ; 112022 05 26.
Article in English | MEDLINE | ID: mdl-35616633

ABSTRACT

Contemporary bioinformatic and chemoinformatic capabilities hold promise to reshape knowledge management, analysis and interpretation of data in natural products research. Currently, reliance on a disparate set of non-standardized, insular, and specialized databases presents a series of challenges for data access, both within the discipline and for integration and interoperability between related fields. The fundamental elements of exchange are referenced structure-organism pairs that establish relationships between distinct molecular structures and the living organisms from which they were identified. Consolidating and sharing such information via an open platform has strong transformative potential for natural products research and beyond. This is the ultimate goal of the newly established LOTUS initiative, which has now completed the first steps toward the harmonization, curation, validation and open dissemination of 750,000+ referenced structure-organism pairs. LOTUS data is hosted on Wikidata and regularly mirrored on https://lotus.naturalproducts.net. Data sharing within the Wikidata framework broadens data access and interoperability, opening new possibilities for community curation and evolving publication models. Furthermore, embedding LOTUS data into the vast Wikidata knowledge graph will facilitate new biological and chemical insights. The LOTUS initiative represents an important advancement in the design and deployment of a comprehensive and collaborative natural products knowledge base.


Subject(s)
Biological Products , Knowledge Management , Computational Biology , Databases, Factual , Knowledge
6.
J Cheminform ; 13(1): 38, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980298

ABSTRACT

The Resource Description Framework (RDF), together with well-defined ontologies, significantly increases data interoperability and usability. The SPARQL query language was introduced to retrieve requested RDF data and to explore links between them. Among other useful features, SPARQL supports federated queries that combine multiple independent data source endpoints. This allows users to obtain insights that are not possible using only a single data source. Owing to all of these useful features, many biological and chemical databases present their data in RDF, and support SPARQL querying. In our project, we primary focused on PubChem, ChEMBL and ChEBI small-molecule datasets. These datasets are already being exported to RDF by their creators. However, none of them has an official and currently supported SPARQL endpoint. This omission makes it difficult to construct complex or federated queries that could access all of the datasets, thus underutilising the main advantage of the availability of RDF data. Our goal is to address this gap by integrating the datasets into one database called the Integrated Database of Small Molecules (IDSM) that will be accessible through a SPARQL endpoint. Beyond that, we will also focus on increasing mutual interoperability of the datasets. To realise the endpoint, we decided to implement an in-house developed SPARQL engine based on the PostgreSQL relational database for data storage. In our approach, data are stored in the traditional relational form, and the SPARQL engine translates incoming SPARQL queries into equivalent SQL queries. An important feature of the engine is that it optimises the resulting SQL queries. Together with optimisations performed by PostgreSQL, this allows efficient evaluations of SPARQL queries. The endpoint provides not only querying in the dataset, but also the compound substructure and similarity search supported by our Sachem project. Although the endpoint is accessible from an internet browser, it is mainly intended to be used for programmatic access by other services, for example as a part of federated queries. For regular users, we offer a rich web application called ChemWebRDF using the endpoint. The application is publicly available at https://idsm.elixir-czech.cz/chemweb/ .

7.
Nucleic Acids Res ; 49(W1): W15-W20, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34019656

ABSTRACT

Interactions among amino acid residues are the principal contributor to the stability of the three-dimensional structure of a protein. The Amino Acid Interactions (INTAA) web server (https://bioinfo.uochb.cas.cz/INTAA/) has established itself as a unique computational resource, which enables users to calculate the contribution of individual residues in a biomolecular structure to its total energy using a molecular mechanical scoring function. In this update, we describe major additions to the web server which help solidify its position as a robust, comprehensive resource for biomolecular structure analysis. Importantly, a new continuum solvation model was introduced, allowing more accurate representation of electrostatic interactions in aqueous media. In addition, a low-overhead pipeline for the estimation of evolutionary conservation in protein chains has been added. New visualization options were introduced as well, allowing users to easily switch between and interrelate the energetic and evolutionary views of the investigated structures.


Subject(s)
Amino Acids/chemistry , Protein Conformation , Proteins/chemistry , Software , Internet , Models, Molecular , Static Electricity
9.
J Cheminform ; 11(1): 45, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31254167

ABSTRACT

MOTIVATION: The existing connections between large databases of chemicals, proteins, metabolites and assays offer valuable resources for research in fields ranging from drug design to metabolomics. Transparent search across multiple databases provides a way to efficiently utilize these resources. To simplify such searches, many databases have adopted semantic technologies that allow interoperable querying of the datasets using SPARQL query language. However, the interoperable interfaces of the chemical databases still lack the functionality of structure-driven chemical search, which is a fundamental method of data discovery in the chemical search space. RESULTS: We present a SPARQL service that augments existing semantic services by making interoperable substructure and similarity searches in small-molecule databases possible. The service thus offers new possibilities for querying interoperable databases, and simplifies writing of heterogeneous queries that include chemical-structure search terms. AVAILABILITY: The service is freely available and accessible using a standard SPARQL endpoint interface. The service documentation and user-oriented demonstration interfaces that allow quick explorative querying of datasets are available at https://idsm.elixir-czech.cz .

10.
J Phys Chem B ; 123(6): 1215-1227, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30645123

ABSTRACT

By combining bioinformatics with quantum-chemical calculations, we attempt to address quantitatively some of the physical principles underlying protein folding. The former allowed us to identify tripeptide sequences in existing protein three-dimensional structures with a strong preference for either helical or extended structure. The selected representatives of pro-helical and pro-extended sequences were converted into "isolated" tripeptides-capped at N- and C-termini-and these were subjected to an extensive conformational sampling and geometry optimization (typically thousands to tens of thousands of conformers for each tripeptide). For each conformer, the QM(DFT-D3)/COSMO-RS free-energy value was then calculated, Gconf(solv). The Δ Gconf(solv) is expected to provide an objective, unbiased, and quantitatively accurate measure of the conformational preference of the particular tripeptide sequence. It has been shown that irrespective of the helical vs extended preferences of the selected tripeptide sequences in context of the protein, most of the low-energy conformers of isolated tripeptides prefer the R-helical structure. Nevertheless, pro-helical tripeptides show slightly stronger helix preference than their pro-extended counterparts. Furthermore, when the sampling is repeated in the presence of a partner tripeptide to mimic the situation in a ß-sheet, pro-extended tripeptides (exemplified by the VIV) show a larger free-energy benefit than pro-helical tripeptides (exemplified by the EAM). This effect is even more pronounced in a hydrophobic solvent, which mimics the less polar parts of a protein. This is in line with our bioinformatic results showing that the majority of pro-extended tripeptides are hydrophobic. The preference for a specific secondary structure by the studied tripeptides is thus governed by the plasticity to adopt to its environment. In addition, we show that most of the "naturally occurring" conformations of tripeptide sequences, i.e., those found in existing three-dimensional protein structures, are within ∼10 kcal·mol-1 from their global minima. In summary, our "ab initio" data suggest that complex protein structures may start to emerge already at the level of their small oligopeptidic units, which is in line with a hierarchical nature of protein folding.


Subject(s)
Peptides/chemistry , Protein Folding , Computational Biology , Density Functional Theory , Hydrogen Bonding , Models, Chemical , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Thermodynamics
11.
J Cheminform ; 10(1): 27, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29797000

ABSTRACT

BACKGROUND: Structure search is one of the valuable capabilities of small-molecule databases. Fingerprint-based screening methods are usually employed to enhance the search performance by reducing the number of calls to the verification procedure. In substructure search, fingerprints are designed to capture important structural aspects of the molecule to aid the decision about whether the molecule contains a given substructure. Currently available cartridges typically provide acceptable search performance for processing user queries, but do not scale satisfactorily with dataset size. RESULTS: We present Sachem, a new open-source chemical cartridge that implements two substructure search methods: The first is a performance-oriented reimplementation of substructure indexing based on the OrChem fingerprint, and the second is a novel method that employs newly designed fingerprints stored in inverted indices. We assessed the performance of both methods on small, medium, and large datasets containing 1, 10, and 94 million compounds, respectively. Comparison of Sachem with other freely available cartridges revealed improvements in overall performance, scaling potential and screen-out efficiency. CONCLUSIONS: The Sachem cartridge allows efficient substructure searches in databases of all sizes. The sublinear performance scaling of the second method and the ability to efficiently query large amounts of pre-extracted information may together open the door to new applications for substructure searches.

12.
Nucleic Acids Res ; 45(W1): W388-W392, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28472475

ABSTRACT

Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations.


Subject(s)
Amino Acids/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Software , Internet , Nucleotides/chemistry , Protein Stability
13.
J Cheminform ; 8: 31, 2016.
Article in English | MEDLINE | ID: mdl-27275187

ABSTRACT

BACKGROUND: In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. RESULTS: We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. CONCLUSIONS: Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.

14.
Phys Chem Chem Phys ; 18(5): 4051-62, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26777459

ABSTRACT

Cancer is after cardiovascular disease the most frequent cause of death in Europe. In 28 of 53 countries considered in this area it is already the leading cause of death and expected to gain even more importance until the year 2020. Amongst the large arsenal of different anti-cancer drugs, platinum drugs belong to the first developed anticancer drugs and still have a large impact on cancer therapy. Nevertheless therapy with platinum-anticancer drugs is accompanied by severe adverse effects caused by frequent interactions with the amino acids of different human proteins. Computational chemistry offers methods to study such interactions and even those of not yet synthesized drugs in silico. For such studies a profound knowledge of the prediction quality of various computational methods towards platinum-drug-like complexes is necessary. By this article we are aiming on delivering important accuracy information of the frequently used computational methods. Most important findings are the high performance of the double hybrid functional B2PLYP for the calculation of geometries, even in small basis sets, followed by BP86 and PBE and the still acceptable performance of the semi-empirical Method PM6-D3H4X for extremely large systems. To follow absolute energies of the dissociation process, LPNO-CEPA and B3LYP-D3 can be suggested while SCS-MP2 shows an extremely narrow standard deviation and a low maximum error, which make it an ideal candidate for relative energy calculations in the exploration of reaction mechanisms.


Subject(s)
Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Quantum Theory , Humans , Molecular Structure
15.
J Cheminform ; 6: 15, 2014.
Article in English | MEDLINE | ID: mdl-24742140

ABSTRACT

BACKGROUND: There are many databases of small molecules focused on different aspects of research and its applications. Some tasks may require integration of information from various databases. However, determining which entries from different databases represent the same compound is not straightforward. Integration can be based, for example, on automatically generated cross-reference links between entries. Another approach is to use the manually curated links stored directly in databases. This study employs well-established InChI identifiers to measure the consistency and completeness of the manually curated links by comparing them with the automatically generated ones. RESULTS: We used two different tools to generate InChI identifiers and observed some ambiguities in their outputs. In part, these ambiguities were caused by indistinctness in interpretation of the structural data used. InChI identifiers were used successfully to find duplicate entries in databases. We found that the InChI inconsistencies in the manually curated links are very high (28.85% in the worst case). Even using a weaker definition of consistency, the measured values were very high in general. The completeness of the manually curated links was also very poor (only 93.8% in the best case) compared with that of the automatically generated links. CONCLUSIONS: We observed several problems with the InChI tools and the files used as their inputs. There are large gaps in the consistency and completeness of manually curated links if they are measured using InChI identifiers. However, inconsistency can be caused both by errors in manually curated links and the inherent limitations of the InChI method.

16.
Proteome Sci ; 9 Suppl 1: S20, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22166105

ABSTRACT

BACKGROUND: Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field. RESULTS: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster. CONCLUSIONS: The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.

SELECTION OF CITATIONS
SEARCH DETAIL
...