Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(14): 6780-6789, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37357569

ABSTRACT

BACKGROUND: Nanoencapsulation has opened promising fields of innovation for pesticides. Conventional pesticides can cause side effects on plant metabolism. To date, the effect of nanoencapsulated pesticides on plant phenolic contents has not been reported. RESULTS: In this study, a comparative evaluation of the phenolic contents and metabolic profiles of strawberries was performed for plants grown under controlled field conditions and treated with two separate active ingredients, azoxystrobin and bifenthrin, loaded into two different types of nanocarriers (Allosperse® polymeric nanoparticles and SiO2 nanoparticles). There were small but significant decreases of the total phenolic content (9%) and pelargonidin 3-glucoside content (6%) in strawberries treated with the nanopesticides. An increase of 31% to 125% was observed in the levels of gallic acid, quercetin, and kaempferol in the strawberries treated with the nanoencapsulated pesticides compared with the conventional treatments. The effects of the nanocarriers on the metabolite and phenolic profiles was identified by principal component analysis. CONCLUSION: Overall, even though the effects of nanopesticides on the phenological parameters of strawberry plants were not obvious, there were significant changes to the plants at a molecular level. In particular, nanocarriers had some subtle effects on plant health and fruit quality through variations in total and individual phenolics in the fruits. Further research will be needed to assess the impact of diverse nanopesticides on other groups of plant metabolites. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Talanta ; 239: 123093, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34920258

ABSTRACT

The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.


Subject(s)
Fragaria , Pesticide Residues , Pesticides , Chromatography, Liquid , Humans , Pesticide Residues/analysis , Pesticides/analysis , Soil , Tandem Mass Spectrometry
4.
Chemosphere ; 261: 127679, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32717510

ABSTRACT

It is important to understand the environmental fate and potential risks posed by metals and metalloids around mines and in legacy mining areas. In order to assess the bioavailable concentrations of several potentially toxic elements (PTEs: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U) and rare earth elements (REEs: La to Lu), a multi-method evaluation of their concentrations/fractionation/speciation in soils was related to their biouptake in corn, for a region surrounding a legacy U mine in Brazil. Chemical fractions of the PTE and REE in soils were determined using the BCR (Community Bureau of Reference) sequential extraction procedure; a single extraction with Ca(NO3)2 and the diffusion gradient in thin films (DGT) technique. All techniques were better correlated to the metals accumulated by the crops as compared to total metal concentrations. Ba, Cu, Mn and Zn were shown to have high mobility and high bioaccumulation factors in the corn. Concentrations of U, As, Cd, and Pb were above threshold concentrations and strongly correlated, suggesting that they had a similar anthropogenic source. Geospatial modeling agreed with results from principal component analysis, indicating multiple sources for the contamination. Results highlighted the need for multi-method approaches when evaluating the long-term risks posed by PTEs and REEs in agricultural soils.


Subject(s)
Environmental Monitoring , Soil Pollutants/analysis , Uranium/analysis , Agriculture , Bioaccumulation , Brazil , Chemical Fractionation , Crops, Agricultural , Metalloids/analysis , Metals, Heavy/analysis , Mining , Soil
5.
Environ Geochem Health ; 42(11): 3965-3981, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32653967

ABSTRACT

To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.


Subject(s)
Crops, Agricultural/chemistry , Metals, Rare Earth/analysis , Soil Pollutants/analysis , Uranium/analysis , Agriculture , Brazil , Coal Mining , Dietary Exposure/adverse effects , Dietary Exposure/analysis , Environmental Monitoring , Humans , Mining , No-Observed-Adverse-Effect Level , Risk Assessment , Soil/chemistry , Trace Elements/analysis , Zea mays/chemistry
6.
Sci Total Environ ; 717: 134484, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31836238

ABSTRACT

In order to assess the environmental risks related to mining activities in Southern Brazil, the transfer of trace metals and rare earth elements (REE) from soils to soybeans was evaluated in a U-rich area associated with coal mining. In some samples, As, Ba, Co, Cu and Ni were higher than the guidelines proposed by the Brazilian environmental agency. Soil, coal, ash, tailings and soybean were systematically sampled so that the chemical fractionation/speciation of the elements could be related to their bioavailability. In addition to total concentrations quantified by ICP-MS after microwave digestion, elemental measurements were made following different evaluations of the bioavailable metal, including chemical extractions (10 mM Ca(NO3)2 and 3-step sequential extraction), diffusive gradient in thin films technique (DGT) and chemical modeling (WHAM-free ion). Lower pH and higher clay and organic matter content were reflected by higher metal assimilation by the plants, especially by the roots and leaves. The bioaccumulation factor (BF) was generally higher for the leaves (e.g. Cu, Mn, Sr, Zn, Ba, REE with exception of Tm and Yb) and roots (e.g. Cd, Th and U). The results revealed that for Ba, Cd, Sr, Pb, U and most of the REE, the free ion concentration was strongly correlated with the metal content in the plants, especially for the grains. Values obtained by DGT were also correlated with the bioavailable portion of Ba, Mn, Sr, Zn, Pb, U and REE. Measurements obtained from Ca extractions correlated well with the bioavailable metals for Ba, Cd, Sr, Rb, Pb and Th. The free or extractable metal fractions gave much better correlations of the bioavailable fractions than did the total metal concentrations from the soils, especially for the REE. The paper validates some simplified means of estimating the risks associated with metals and REE in tropical soils affected by mining activities.


Subject(s)
Coal Mining , Biological Availability , Brazil , Environmental Monitoring , Metals , Mining , Soil , Soil Pollutants , Trace Elements
SELECTION OF CITATIONS
SEARCH DETAIL
...