Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Bull ; 48(4): 442-457, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965925

ABSTRACT

Iron is an important micronutrient required for a number of biological processes including oxygen transport, cellular respiration, the synthesis of nucleic acids and the activity of key enzymes. The World Health Organization has recognised iron deficiency as the most common nutritional deficiency globally and as a major determinant of anaemia. Iron deficiency anaemia affects 40% of all children between the ages of 6 and 59 months, 37% of mothers who are pregnant and 30% of women between the ages of 15 and 49 years worldwide. Dietary iron exists in two main forms known as haem iron and non-haem iron. Haem iron is obtained from animal sources such as meat and shows higher bioavailability than non-haem iron, which can be obtained from both plant and animal sources. Different components in food can enhance or inhibit iron absorption from the diet. Components such as meat proteins and organic acids increase iron absorption, while phytate, calcium and polyphenols reduce iron absorption. Iron levels in the body are tightly regulated since both iron overload and iron deficiency can exert harmful effects on human health. Iron is stored mainly as haemoglobin and as iron bound to proteins such as ferritin and hemosiderin. Iron deficiency affects individuals at increased risk due to factors such as age, pregnancy, menstruation and various diseases. Different solutions for iron deficiency are applied at individual and community levels. Iron supplements and intravenous iron can be used to treat individuals with iron deficiency, while various types of iron-fortified foods and biofortified crops can be employed for larger communities. Foods such as rice, flour and biscuits have been used to prepare fortified iron products. However, it is important to ensure the fortification process does not exert significant negative effects on organoleptic properties and the shelf life of the food product.


Subject(s)
Iron Deficiencies , Iron , Child , Pregnancy , Humans , Female , Infant , Child, Preschool , Food, Fortified , Micronutrients , Iron, Dietary , Heme
2.
BMC Complement Altern Med ; 17(1): 312, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28615015

ABSTRACT

BACKGROUND: Antacids, anticholinergic drugs, histamine H2- receptor antagonists and irreversible proton pump inhibitors have been used for the treatment of gastric ulcers. However, prolonged use of these drugs may lead to series of adverse effects such as diarrhea, headache, rash, hypertension, muscular and joint pain. Therefore, there is an urgent need of more effective and safer treatments with fewer side effects. The aim of the present study was to scientifically evaluate the gastroprotective activity of fractions of the hot water extract of Trichosanthes cucumerina Linn (Family: Cucurbitaceae) aerial parts with a view to identifying the fraction with the best gastroprotective activity and the possible mechanism/s by which this fraction exert gastroprotection. METHODS: Gastroprotective activity of hexane fraction (HF), ethyl acetate fraction (EF), butanol fraction (BF) and aqueous fraction (AF) were evaluated by the assessment of ability to reduce the ulcer index in ethanol-induced rat model and the mode of action by which the most active fraction mediating gastroprotection. RESULTS: EF showed the maximum gastroprotection effect followed by BF and AF. EF (75 mg/kg) exhibited significantly higher gastroprotection compared to the reference drugs. Further investigations with two lower doses of EF confirmed that EF can mediated a significant and dose dependent gastroprotection. The rats treated with the EF showed significant reduction in free acidity (45%), total acidity (by 48%) in the gastric juice, increased the amount of mucus produced by the rat gastro mucosa and potent antihistamine activity (by 25.6%). EF was also rich in phenolic compounds and flavonoids. CONCLUSION: Gastroprotective mechanism of EF is possibly involves inhibition of acidity, elevation in mucus content, inhibition of histamine and antioxidant mechanisms.


Subject(s)
Plant Extracts/administration & dosage , Protective Agents/administration & dosage , Stomach Ulcer/drug therapy , Trichosanthes/chemistry , Animals , Antioxidants/metabolism , Gastric Juice/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , Male , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protective Agents/chemistry , Protective Agents/isolation & purification , Rats, Wistar , Stomach Ulcer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...