Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 465: 133203, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38103294

ABSTRACT

Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 µg/mL for E. coli, P. aeruginosa, and 6.25 µg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 µg/mL for E. coli, P. aeruginosa, and 25 µg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Reactive Oxygen Species , Bacteria , Biofilms , Microbial Sensitivity Tests
2.
Int J Biol Macromol ; 242(Pt 1): 124634, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37119908

ABSTRACT

Two sorbents were developed from chitosan aminophosphonation: via one-pot process to produce aminophosphonated derivative (r-AP), followed by further pyrolysis to produce mesoporous improved biochar (IBC). Sorbents structures were elucidated using CHNP/O, XRD, BET, XPS, DLS, FTIR, and pHZPC-titration. The IBC exhibits an improved specific surface (262.12 m2/g) and mesopore size (8.34 nm) compared to its organic precursor (r-AP), 52.53 m2/g and 3.39 nm. IBC surface is also enriched with high electron density heteroatoms (P/O/N). These unique merits of porosity and surface-active-sites improved sorption efficiency. Sorption characteristics were determined for uranyl recovery, and binding mechanisms were elucidated using FTIR and XPS. The maximum sorption capacity increased from 0.571 to 1.974 mmol/g for r-AP and IBC, respectively, roughly correlated with the active-sites density per mass. Equilibrium occurred within 60/120 min, and the half-sorption-time (tHST) was decreased from 10.73 for r-AP to 5.48 min for IBC. Langmuir and pseudo-second-order equation fits experimental data well. Sorption is endothermic for IBC (whereas exothermic with r-AP), spontaneous, and governed by entropy change. Both sorbents show high durability over multiple-cycles with desorption efficiency >94 % over seven cycles using NaHCO3 (0.25 M). The sorbents efficiently tested for U(VI) recovery from acidic ore leachate with outstanding selectivity coefficients.


Subject(s)
Chitosan , Chitosan/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics
3.
Polymers (Basel) ; 15(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904398

ABSTRACT

To limit the dangers posed by Cu(II) pollution, chitosan-nanohybrid derivatives were developed for selective and rapid copper adsorption. A magnetic chitosan nanohybrid (r-MCS) was obtained via the co-precipitation nucleation of ferroferric oxide (Fe3O4) co-stabilized within chitosan, followed by further multifunctionalization with amine (diethylenetriamine) and amino acid moieties (alanine, cysteine, and serine types) to give the TA-type, A-type, C-type, and S-type, respectively. The physiochemical characteristics of the as-prepared adsorbents were thoroughly elucidated. The superparamagnetic Fe3O4 nanoparticles were mono-dispersed spherical shapes with typical sizes (~8.5-14.7 nm). The adsorption properties toward Cu(II) were compared, and the interaction behaviors were explained with XPS and FTIR analysis. The saturation adsorption capacities (in mmol.Cu.g-1) have the following order: TA-type (3.29) > C-type (1.92) > S-type (1.75) > A-type(1.70) > r-MCS (0.99) at optimal pH0 5.0. The adsorption was endothermic with fast kinetics (except TA-type was exothermic). Langmuir and pseudo-second-order equations fit well with the experimental data. The nanohybrids exhibit selective adsorption for Cu(II) from multicomponent solutions. These adsorbents show high durability over multiple cycles with desorption efficiency > 93% over six cycles using acidified thiourea. Ultimately, QSAR tools (quantitative structure-activity relationships) were employed to examine the relationship between essential metal properties and adsorbent sensitivities. Moreover, the adsorption process was described quantitatively, using a novel three-dimensional (3D) nonlinear mathematical model.

4.
Polymers (Basel) ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808614

ABSTRACT

Nuclear power facilities are being expanded to satisfy expanding worldwide energy demand. Thus, uranium recovery from secondary resources has become a hot topic in terms of environmental protection and nuclear fuel conservation. Herein, a mesoporous biosorbent of a hybrid magnetic-chitosan nanocomposite functionalized with cysteine (Cys) was synthesized via subsequent heterogeneous nucleation for selectively enhanced uranyl ion (UO22+) sorption. Various analytical tools were used to confirm the mesoporous nanocomposite structural characteristics and confirm the synthetic route. The characteristics of the synthesized nanocomposite were as follows: superparamagnetic with saturation magnetization (MS: 25.81 emu/g), a specific surface area (SBET: 42.56 m2/g) with a unipore mesoporous structure, an amine content of ~2.43 mmol N/g, and a density of ~17.19/nm2. The experimental results showed that the sorption was highly efficient: for the isotherm fitted by the Langmuir equation, the maximum capacity was about 0.575 mmol U/g at pH range 3.5-5.0, and Temperature (25 ± 1 °C); further, there was excellent selectivity for UO22+, likely due to the chemical valent difference. The sorption process was fast (~50 min), simulated with the pseudo-second-order equation, and the sorption half-time (t1/2) was 3.86 min. The sophisticated spectroscopic studies (FTIR and XPS) revealed that the sorption mechanism was linked to complexation and ion exchange by interaction with S/N/O multiple functional groups. The sorption was exothermic, spontaneous, and governed by entropy change. Desorption and regeneration were carried out using an acidified urea solution (0.25 M) that was recycled for a minimum of six cycles, resulting in a sorption and desorption efficiency of over 91%. The as-synthesized nanocomposite's high stability, durability, and chemical resistivity were confirmed over multiple cycles using FTIR and leachability. Finally, the sorbent was efficiently tested for selective uranium sorption from multicomponent acidic simulated nuclear solution. Owing to such excellent performance, the Cys nanocomposite is greatly promising in the uranium recovery field.

5.
Environ Sci Pollut Res Int ; 29(57): 86825-86839, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35796927

ABSTRACT

Facile solvothermal techniques were used to manufacture ZnS/1T-2H MoS2 nanocomposite (ZMS) with outstanding adsorption-photocatalytic activity. The formed catalyst was characterized by different tools; XRD, HR-TEM, EDX, FTIR, Raman, N2adsorprion/desorption, Zeta potential, PL,and XPS. The analysis provided the formation on mixed phase of metallic 1Tand 2H phases. ZMS has a high porosity and large specific surface area, and it has a high synergistic adsorption-photocatalytic degradation effect for MB, with a removal efficiency of ≈100% in 45 minutes under visible light irradiation. The extraordinary MB removal efficiency of ZMS was attributed not only to the high specific surface area (49.15 m2/g) and precious reactive sites generated by ZMS, but also to the formation of 1T and 2H phases if compared to pristine MoS2 (MS). The best adsorption affinity was induced by the existance of 1T phase. The remarkably enhanced photocatalytic activity of ZMS nanocomposite can be ascribed to the 2D heterostructure which enhances the adsorption for pollutants, provides abundant reaction active sites, extends the photoresponse to visible light region.

6.
Chemosphere ; 304: 135253, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35697101

ABSTRACT

Herein, efficient and potential chelating α-aminophosphonate based sorbents (AP-) derived from three different amine origins (aniline/anthranilic acid/O-phenylenediamine) to form AP-H, carboxylated and aminated enhanced aminophosphonate as AP-H, AP-COOH, and AP-NH2 were synthesized via a facile method. The structure of the synthesized sorbents was elucidated using different techniques; elemental analysis (CHNP/O), FT-IR, NMR (1H-, 13C and 31P NMR), TGA and BET. The fabricated sorbents were exploited for Hg(II) removal from aqueous solution via sorption properties. Isotherm fitted by Langmuir equation: the maximum sorption capacities at optimum pH 5.5, and T:25 ± 1 °C, were found to be 1.33, 1.23, and 1.15 mmol Hg g-1 for AP-COOH, AP-NH2, AP-H, respectively, which is roughly correlated with the active sites density and the hard/soft characteristics of adsorbents' reactive groups. Metal-ligand binding affinities are qualitatively rationalized in terms of hard and soft acids and bases (HSAB) theory. The interaction of Hg(II) (soft) has a stronger affinity to AP-COOH can be considered a softer base compared with reference material (AP-H) over than AP-NH2 (hard). This sequence result showed opposite trends consistent with their reciprocal properties according to the steric effect modulates and the specific surface area. Thermodynamics analysis for absolute values of ΔH°, ΔS° and ΔG° afford the selectivity towards Hg(II) sorption with the following order: AP-COOH > AP-NH2 >AP-H. Elution and regeneration was carried out by HCl solution and recycled for a minimum of five cycles, the sorption and desorption efficiencies are greater than 91%. Such sorbents exhibit good durability, stability and promising potential for Hg(II) removal. Finally, a new modelling technique for quantitative non-linear description and comparison of equivalent geographical positions in 3D space of extended relationships. Exothermic and spontaneous behavior were observed using a proposed Floatotherm that included the Van't Hoff parameters model.


Subject(s)
Mercury , Water Purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Purification/methods
7.
Environ Pollut ; 264: 114797, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559874

ABSTRACT

A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g-1) occurred at pH = 3-4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO3 solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g-1 despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).


Subject(s)
Nanocomposites , Uranium , Adsorption , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Polymethacrylic Acids
8.
RSC Adv ; 9(66): 38783-38796, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-35540234

ABSTRACT

Designing and fabricating nanocomposite magnetic sorbents (with more accessible active sites for achieving high sorption capacities, selectivity and rapid kinetics) has become an impending challenge in the removal of radionuclides. Two core-shell multifunctional magnetic-nanocomposites have been prepared suitably to be used as sorbents using facile two-step processes. In the first step, after synthesis of parent PGMA microparticles (by a dispersion polymerization method), the grafting of aminoalkylcarboxylate and aminoalkylphosphonic ligands (via an intermediary amination step of PGMA) allows increasing sorption capacities due to the specific reactivity of carboxylate and phosphonate groups, giving iminodiacetate (IDA-PGMA) and iminodiphosphonate (IDP-PGMA), respectively. In the second step, functionalized-PGMA was ball-milled with pre-formed magnetic nanoparticles using high-energy planetary milling, resulting in a magnetic nanocomposite structure (M-IDA-PGMA and M-IDP-PGMA). These sorbents were characterized by elemental analysis, FTIR, XRD, pHZPC, TEM, and VSM. The magnetic nanocomposite sizes were around 10.0 nm. The super paramagnetic properties of the hybrid materials make their solid/liquid separation quite easy using an external magnetic field. These materials were investigated for uranium sorption. Optimum pH was found to be close to 4.0; the maximum monolayer chemisorption capacities reach 122.9 and 147.0 mg g-1 for M-IDA- and M-IDP-PGMA, respectively. The adsorption activation energies were calculated from the Arrhenius equation. The sorption is spontaneous, endothermic and controlled by entropic change. Sorbents were tested for U(vi) removal from a real acidic leachate of ores collected in the El-Sella mining area. Finally, sodium bicarbonate revealed efficiency for uranium desorption and the re-use of sorbents was successfully tested for five cycles.

9.
Int J Biol Macromol ; 104(Pt A): 963-968, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28663149

ABSTRACT

A direct reaction is described to prepare hydrophobic α-aminomethylphosphonic acid as a novel chitosan-based material. It exhibits chelating properties for polyvalent metal ions such as U(VI) and Nd(III) ions. The new sorbent was fully characterized using Elemental analysis, scanning electron microscope (SEM) and FTIR spectra. Different parameters were examined in order to evaluate the optimum conditions for U(VI) and Nd(III) ions biosorption. Sorption mechanisms of metal ions were investigated using kinetic and isotherm models. In addition, the sorbent selectivity was tested for both metal ions together in a binary solution.


Subject(s)
Chelating Agents/chemistry , Neodymium/chemistry , Neodymium/isolation & purification , Polysaccharides/chemistry , Uranium/chemistry , Uranium/isolation & purification , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
10.
Carbohydr Polym ; 157: 1809-1820, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987899

ABSTRACT

The grafting of amino and carboxylic acid groups on cellulose increased La(III) sorption efficiency of cellulose: maximum sorption capacity increased from 38mgLag-1 for cellulose to 101 and 170mgLag-1 for amino derivative (PAC) and amino-carboxylic derivative (PCMC). Langmuir equation successfully fits sorption isotherms while uptake kinetics are effectively modeled using the pseudo-first order rate equation (though resistance to intraparticle diffusion plays a significant role in the control of metal recovery). Uptake equilibrium occurred within 150-180min. The thermodynamic study shows that the reaction is spontaneous, endothermic and entropic. Nitric acid solutions (0.5M concentration) can be efficiently used for metal recovery and sorbent can be recycled for at least 5 cycles with limited decrease in sorption performance for the three sorbents. The materials were characterized by elemental analysis, acid-base titration, FTIR spectrometry, x-ray diffraction analysis, X-ray photoelectron spectroscopy, SEM-EDX analysis and also by TGA.

11.
Nanomaterials (Basel) ; 5(1): 154-179, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-28347004

ABSTRACT

Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea.

SELECTION OF CITATIONS
SEARCH DETAIL
...