Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1359117, 2024.
Article in English | MEDLINE | ID: mdl-38533398

ABSTRACT

Improving the seed protein concentration (SPC) of pea (Pisum sativum L.) has turned into an important breeding objective because of the consumer demand for plant-based protein and demand from protein fractionation industries. To support the marker-assisted selection (MAS) of SPC towards accelerated breeding of improved cultivars, we have explored two diverse recombinant inbred line (RIL) populations to identify the quantitative trait loci (QTLs) associated with SPC. The two RIL populations, MP 1918 × P0540-91 (PR-30) and Ballet × Cameor (PR-31), were derived from crosses between moderate SPC × high SPC accessions. A total of 166 and 159 RILs of PR-30 and PR-31, respectively, were genotyped using an Axiom® 90K SNP array and 13.2K SNP arrays, respectively. The RILs were phenotyped in replicated trials in two and three locations of Saskatchewan, Canada in 2020 and 2021, respectively, for agronomic assessment and SPC. Using composite interval mapping, we identified three QTLs associated with SPC in PR-30 and five QTLs in PR-31, with the LOD value ranging from 3.0 to 11.0. A majority of these QTLs were unique to these populations compared to the previously known QTLs for SPC. The QTL SPC-Ps-5.1 overlapped with the earlier reported SPC associated QTL PC-QTL-3. Three QTLs, SPC-Ps-4.2, SPC-Ps-5.1, and SPC-Ps-7.2 with LOD scores of 7.2, 7.9, and 11.3, and which explained 14.5%, 11.6%, and 11.3% of the phenotypic variance, respectively, can be used for marker-assisted breeding to increase SPC in peas. Eight QTLs associated with the grain yield were identified with LOD scores ranging from 3.1 to 8.2. Two sets of QTLs, SPC-Ps-2.1 and GY-Ps-2.1, and SPC-Ps-5.1 and GY-Ps-5.3, shared the QTL/peak regions. Each set of QTLs contributed to either SPC or grain yield depending on which parent the QTL region is derived from, thus confirming that breeding for SPC should take into consideration the effects on grain yield.

2.
Front Plant Sci ; 14: 1083086, 2023.
Article in English | MEDLINE | ID: mdl-36968409

ABSTRACT

With the expanding interest in plant-based proteins in the food industry, increasing emphasis is being placed on breeding for protein concentration and quality. Two protein quality traits i.e., amino acid profile and protein digestibility, were assessed in replicated, multi-location field trials from 2019 to 2021 in pea recombinant inbred line population PR-25. This RIL population was targeted specifically for the research of protein related traits and its parents, CDC Amarillo and CDC Limerick, had distinct variations in the concentration of several amino acids. Amino acid profile was determined using near infrared reflectance analysis, and protein digestibility was through an in vitro method. Several essential amino acids were selected for QTL analysis, including lysine, one of the most abundant essential amino acids in pea, and methionine, cysteine, and tryptophan, the limiting amino acids in pea. Based on phenotypic data of amino acid profiles and in vitro protein digestibility of PR-25 harvested in seven location-years, three QTLs were associated with methionine + cysteine concentration, among which, one was located on chromosome 2 (R2 = 17%, indicates this QTL explained 17% phenotypic variation of methionine + cysteine concentration within PR-25), and two were located on chromosome 5 (R2 = 11% and 16%). Four QTLs were associated with tryptophan concentration and are located on chromosome 1 (R2 = 9%), chromosome 3 (R2 = 9%), and chromosome 5 (R2 = 8% and 13%). Three QTLs were associated with lysine concentration, among which, one was located on chromosome 3 (R2 = 10%), the other two were located on chromosome 4 (R2 = 15% and 21%). Two QTLs were associated with in vitro protein digestibility, one each located on chromosomes 1 (R2 = 11%) and 2 (R2 = 10%). QTLs associated with in vitro protein digestibility, and methionine + cysteine concentration on chromosome 2 were identified to be co-localized with known QTL for total seed protein concentration in PR-25. QTLs associated with tryptophan and methionine + cysteine concentration co-localized on chromosome 5. The identification of QTLs associated with pea seed quality is an important step towards marker-assisted selection of breeding lines with improved nutritional quality, which will further boost the competitiveness of pea in plant-based protein markets.

3.
Front Plant Sci ; 13: 933277, 2022.
Article in English | MEDLINE | ID: mdl-36061786

ABSTRACT

Chickpea is a cool season crop that is highly vulnerable to abiotic stresses such as heat and drought. High temperature during early flowering and pod development stages significantly reduces the crop yield. The wild relatives of chickpeas can be potential donors for the introgression of heat and drought tolerance into cultivated chickpeas for crop improvement. Initially, 600 interspecific lines were derived from crosses between two elite cultivars, CDC Leader (kabuli chickpea) and CDC Consul (desi chickpea), and 20 accessions of Cicer reticulatum. The F5 interspecific lines were tested for agronomic and seed quality traits including reaction to ascochyta blight disease under field conditions at two locations in 2018. A subset of 195 lines were selected based on resistance to ascochyta blight and acceptable seed quality. These lines were evaluated for their performance under suboptimal conditions at Lucky Lake (2019 and 2020) and Moose Jaw (2019), Saskatchewan, Canada, and Yuma, Arizona, United States (2019-2020). The lines were grown and evaluated at two seeding dates, normal (SD1) and late (SD2) seeding dates, at each location and year. The same lines were genotyped using Cicer60K Axiom® SNP chip. The population structure was determined based on 35,431 informative SNPs using fastStructure, and the interspecific lines were clustered at a k-value of 15. Significant marker-trait associations were identified for seed yield from SD1 and SD2 seeding dates, and stress tolerance indices (ATI, K1STI, MP, SSPI, and TOL) using phenotypic values both from individual locations and combined analyses based on BLUP values. SNP marker Ca2_34600347 was significantly associated with yield from both the seeding dates. This and other SNP markers identified in this study may be useful for marker-assisted introgression of abiotic stress tolerance in chickpea.

4.
Genes (Basel) ; 13(9)2022 08 26.
Article in English | MEDLINE | ID: mdl-36140699

ABSTRACT

This research aimed to identify quantitative trait loci (QTLs) associated with seed protein concentration in a recombinant inbred line (RIL) population of pea and aimed to validate the identified QTLs using chromosome segment-introgressed lines developed by recurrent backcrossing. PR-25, an RIL population consisting of 108 F7 bulked lines derived from a cross between CDC Amarillo (yellow cotyledon) and CDC Limerick (green cotyledon), was used in this research. The RIL population was genotyped using an Axiom 90K SNP array. A total of 10,553 polymorphic markers were used for linkage map construction, after filtering for segregation distortion and missing values. The linkage map represents 901 unique loci on 11 linkage groups which covered a map distance of 855.3 Centimorgans. Protein concentration was assessed using near-infrared (NIR) spectroscopy of seeds harvested from field trials in seven station-years in Saskatchewan, Canada, during the 2019-2021 field seasons. Three QTLs located on chromosomes 2, 3 and 5 were identified to be associated with seed protein concentration. These QTLs explained 22%, 11% and 17% of the variation for protein concentration, respectively. The identified QTLs were validated by introgression lines, developed by marker-assisted selection of backcross lines for introgression of corresponding chromosome segments (~1/4 chromosome) harboring the QTL regions. Introgression line PR-28-7, not carrying any protein-related QTLs identified in this study, was 4.7% lower in protein concentration than CDC Amarillo, the lower protein parent of PR-25 which carried one identified protein-related QTL. The SNP markers located at the peak of the three identified QTLs will be converted into breeder-friendly KASP assays, which will be used for the selection of high-protein lines from segregating populations.


Subject(s)
Pisum sativum , Quantitative Trait Loci , Chromosome Mapping , Genetic Linkage , Pisum sativum/genetics , Seeds/genetics
5.
PLoS One ; 17(2): e0262891, 2022.
Article in English | MEDLINE | ID: mdl-35130285

ABSTRACT

The ascomycete, Sclerotinia sclerotiorum, has a broad host range and causes yield loss in dicotyledonous crops world wide. Genomic diversity was determined in a population of 127 isolates obtained from individual canola (Brassica napus) fields in western Canada. Genotyping with 39 simple sequence repeat (SSR) markers revealed each isolate was a unique haplotype. Analysis of molecular variance showed 97% was due to isolate and 3% due to geographical location. Testing of mycelium compatibility among 133 isolates identified clones of mutually compatible isolates with 86-95% similar SSR haplotype, whereas incompatible isolates were highly diverse. In the Province of Manitoba, 61% of isolates were compatible forming clones and stings of pairwise compatible isolates not described before. In contrast, only 35% of isolates were compatible in Alberta without forming clones and strings, while 39% were compatible in Saskatchewan with a single clone, but no strings. These difference can be explained by wetter growing seasons and more susceptible crop species in Manitoba favouring frequent mycelium interaction and more life cycles over time, which might also explain similar differences observed in other geographical areas and host crops. Analysis of linkage disequilibrium rejected random recombination, consistent with a self-fertile fungus, restricted outcrossing due to mycelium incompatibility, and only a single annual opportunity for genomic recombination during meiosis in the ascospore stage between non-sister chromatids in the rare event nuclei from different isolates come together. More probable sources of genomic diversity is slippage during DNA replication and point mutation affecting single nucleotides that accumulate and likely increase mycelium incompatibility in a population over time. A phylogenetic tree based on SSR haplotype grouped isolates into 17 sub-populations. Aggressiveness was tested by inoculating one isolate from each sub-population onto B. napus lines with quantitative resistance. Analysis of variance was significant for isolate, line, and isolate by line interaction. These isolates represent the genomic and pathogenic diversity in western Canada, and are suitable for resistance screening in canola breeding programs.


Subject(s)
Ascomycota
6.
Front Plant Sci ; 10: 1538, 2019.
Article in English | MEDLINE | ID: mdl-31850030

ABSTRACT

Genome-wide association study (GWAS) was conducted to identify loci associated with agronomic (days to flowering, days to maturity, plant height, seed yield and seed weight), seed morphology (shape and dimpling), and seed quality (protein, starch, and fiber concentrations) traits of field pea (Pisum sativum L.). A collection of 135 pea accessions from 23 different breeding programs in Africa (Ethiopia), Asia (India), Australia, Europe (Belarus, Czech Republic, Denmark, France, Lithuania, Netherlands, Russia, Sweden, Ukraine and United Kingdom), and North America (Canada and USA), was used for the GWAS. The accessions were genotyped using genotyping-by-sequencing (GBS). After filtering for a minimum read depth of five, and minor allele frequency of 0.05, 16,877 high quality SNPs were selected to determine marker-trait associations (MTA). The LD decay (LD1/2max,90) across the chromosomes varied from 20 to 80 kb. Population structure analysis grouped the accessions into nine subpopulations. The accessions were evaluated in multi-year, multi-location trials in Olomouc (Czech Republic), Fargo, North Dakota (USA), and Rosthern and Sutherland, Saskatchewan (Canada) from 2013 to 2017. Each trait was phenotyped in at least five location-years. MTAs that were consistent across multiple trials were identified. Chr5LG3_566189651 and Chr5LG3_572899434 for plant height, Chr2LG1_409403647 for lodging resistance, Chr1LG6_57305683 and Chr1LG6_366513463 for grain yield, Chr1LG6_176606388, Chr2LG1_457185, Chr3LG5_234519042 and Chr7LG7_8229439 for seed starch concentration, and Chr3LG5_194530376 for seed protein concentration were identified from different locations and years. This research identified SNP markers associated with important traits in pea that have potential for marker-assisted selection towards rapid cultivar improvement.

7.
Front Plant Sci ; 10: 323, 2019.
Article in English | MEDLINE | ID: mdl-30930928

ABSTRACT

Whole genome profiling (WGP) is a sequence-based physical mapping technology and uses sequence tags generated by next generation sequencing for construction of bacterial artificial chromosome (BAC) contigs of complex genomes. The physical map provides a framework for assembly of genome sequence and information for localization of genes that are difficult to find through positional cloning. To address the challenges of accurate assembly of the pea genome (∼4.2 GB of which approximately 85% is repetitive sequences), we have adopted the WGP technology for assembly of a pea BAC library. Multi-dimensional pooling of 295,680 BAC clones and sequencing the ends of restriction fragments of pooled DNA generated 1,814 million high quality reads, of which 825 million were deconvolutable to 1.11 million unique WGP sequence tags. These WGP tags were used to assemble 220,013 BACs into contigs. Assembly of the BAC clones using the modified Fingerprinted Contigs (FPC) program has resulted in 13,040 contigs, consisting of 213,719 BACs, and 6,294 singleton BACs. The average contig size is 0.33 Mbp and the N50 contig size is 0.62 Mbp. WGPTM technology has proved to provide a robust physical map of the pea genome, which would have been difficult to assemble using traditional restriction digestion based methods. This sequence-based physical map will be useful to assemble the genome sequence of pea. Additionally, the 1.1 million WGP tags will support efficient assignment of sequence scaffolds to the BAC clones, and thus an efficient sequencing of BAC pools with targeted genome regions of interest.

SELECTION OF CITATIONS
SEARCH DETAIL
...