Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 20(4): 581-594, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30614615

ABSTRACT

The development of a suitable functional electrolyte is urgently required for fast-charging and high-voltage alkali-ion (Li, Na, K) batteries as well as next-generation hybrids supercapacitors. Many recent works focused on an optimal selection of electrolytes for alkali-ion based systems and their electrochemical performance but the understanding of the fundamental aspect that explains their different behaviour is rare. Herein, we report a comparative study of transport properties for LiPF6 , NaPF6 , KPF6 in acetonitrile (AN) and a binary mixture of ethylene carbonate (EC), dimethyl carbonate (DMC): (EC/DMC : 1/1, weigh) through conductivities, densities and viscosities measurements in wide temperature domain. By application of the Stokes-Einstein, Nernst-Einstein, and Jones Dole equations, the effective ionic solvated radius of cation (reff ), the ionic dissociation coefficient (αD ) and structuring Jones Dole's parameters (A, B) for salt are calculated and discussed according to solvent or cation nature as a function of temperature. From the results, we demonstrate that better mobility of potassium can be explained by the nature of the ion-ion and ion-solvent interactions due to its polarizability. In the same time, the predominance of triple ions in the case of K+ , is a disadvantage at high concentration.

2.
Phys Chem Chem Phys ; 16(11): 5201-12, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24487415

ABSTRACT

Binary mixtures of cyclic (TMS) or acyclic sulfones (MIS, EIS and EMS) with EMC or DMC have been used in electrolytes containing LiPF6 (1 M) in both Li4Ti5O12/Li half-cells and Li4+xTi5O12/Li4Ti5O12 symmetric cells and compared with standard EC/EMC or EC/DMC mixtures. In half-cells, sulfone-based electrolytes cannot be satisfactorily cycled owing to the formation of a resistive layer at the lithium interface, which is not stable and generates species (RSO2(-) and RSO3(-)) able to migrate toward the titanate electrode interface. Potentiostatic and galvanostatic tests of Li4Ti5O12/Li half-cells show that charge transfer resistance increases drastically when sulfones are used in the electrolyte composition. Moreover, cyclability and coulombic efficiency are low. Conversely, when symmetric Li4+xTi5O12/Li4Ti5O12 cells are used, it is demonstrated that MIS-(methyl isopropyl sulfone) and TMS-(tetra methyl sulfone) based electrolytes exhibit reasonable electrochemical performances as compared to the EC/DMC or EC/EMC standard mixtures. Surface analysis by XPS of both the Li4+xTi5O12 (partially oxidized) and Li7Ti5O12 (reduced) electrodes taken from symmetric cells reveals that sulfones do not participate in the formation of surface layers. Alkylcarbonates (EMC or DMC), used as co-solvents in sulfone-based binary electrolytes, ensure the formation of surface layers at the titanate interfaces. Therefore, EMC reduction at the two Li4+xTi5O12/electrolyte interfaces in symmetric cells leads to the formation of carbonates, ethers and mineral compounds such as ROCO2Li and Li2CO3. Finally, huge amounts of LiF are detected at the titanate electrode surface, resulting in an increase in the resistivity of symmetric cells and capacity losses.

3.
Phys Chem Chem Phys ; 15(48): 20900-10, 2013 Dec 28.
Article in English | MEDLINE | ID: mdl-24196415

ABSTRACT

Cycling after storage of LiNi0.4Mn1.6O4/Li4Ti5O12 cells evidences lower total capacity losses for EMS-, TMS- and MIS-based electrolytes as compared to EC-based at 20 °C. The shuttle-type mechanism induced by the electrolyte oxidation is mainly present in the accumulators at this temperature, as compared to those due to the Mn(2+) and Ni(2+) dissolution. At 30 and 40 °C, EC is responsible for the polymer film formation on the LiNi0.4Mn1.6O4 surface, which limits the transition metal ion dissolution. This results in lower reversible capacity losses compared to sulfones, but are still important: 45% at 30 °C and 70-75% at 40 °C. XPS spectra reveal that EMS does not contribute to the surface film formation on the LiNi0.4Mn1.6O4 spinel, regardless of the cycling conditions and temperature. Only the EMC decomposition at high potential in sulfone/EMC electrolytes is responsible for an organic layer formation, which is composed of low passivating oligomers that comprise the C-O and C=O functional groups. Sulfones are promising compounds to be used in high voltage Li-ion batteries thanks to their non-reactivity towards the LiNi0.4Mn1.6O4 cathode. However, this does not allow the deposition of surface films that would have enabled stopping the Mn(2+) and Ni(2+) dissolution in the electrolyte. This is responsible for degraded performances of LiNi0.4Mn1.6O4/Li4Ti5O12 cells as compared to EC-based electrolytes over ambient temperatures, especially at 30 °C.

4.
J Phys Chem B ; 117(5): 1389-402, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23286649

ABSTRACT

Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl)sulfonyl]imide, [S(111)][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN(111)][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, x(s), in each solvent to the pure solvent. In this case, x(s) is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm(-1) were observed in the case of the [S(111)][TFSI] + ACN and [HN(111)][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, T(S-S), with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes.

5.
Phys Chem Chem Phys ; 14(22): 8199-207, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22546714

ABSTRACT

This study describes the preparation, characterization and application of [Et(3)NH][TFSA], either neat or mixed with acetonitrile, as an electrolyte for supercapacitors. Thermal and transport properties were evaluated for the neat [Et(3)NH][TFSA], and the temperature dependence of viscosity and conductivity can be described by the VTF equation. The evolution of conductivity with the addition of acetonitrile rendered it possible to determine the optimal mixture at 25 °C, with a weight fraction of acetonitrile of 0.5. This mixture was also evaluated for transport properties, and showed a Newtonian behavior, as the neat PIL. An electrochemical study demonstrated, at first, a passivation on Al after the second cyclic voltammogram. Subsequently, the electrochemical window was estimated using a three-electrode cell to 4 V on a platinum electrode, and to 2.5 V on activated carbon. Finally, the neat PIL was found to exhibit good performances as promising electrolyte for supercapacitor applications.

6.
J Phys Chem B ; 114(5): 1757-66, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20085258

ABSTRACT

New protic ionic liquids (PILs) based on the morpholinium, N-methylmorpholinium, and N-ethyl morpholinium cations have been synthesized through a simple and atom-economic neutralization reaction between N-alkyl morpholine and formic acid. Their densities, refractive indices, thermal properties, and electrochemical windows have been measured. The temperature dependence of their dynamic viscosity and ionic conductivity have also been determined. The results allow us to classify them according to a classical Walden diagram and to evaluate their "fragility". In addition, morpholinium based PILs exhibit a large electrochemical window as compared to other protic ionic liquids (up 2.91 V) and possess relatively high ionic conductivities of 10-16.8 mS x cm(-1) at 25 degrees C and 21-29 mS x cm(-1) at 100 degrees C, and a residual conductivity close to 1.0 mS x cm(-1) at -15 degrees C. PIL-water mixtures exhibit high ionic conductivities up to 65 mS x cm(-1) at 25 degrees C and 120 mS x cm(-1) at 100 degrees C for morpholinium formate with water weight fraction w(w) = 0.6. Morpholinium based PILs studied in this work have a low cost and low toxicity, are good ionic liquids, and prove extremely fragile. They have wide applicable perspectives as electrolytes for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional solvents.

7.
J Phys Chem B ; 112(42): 13335-43, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18826270

ABSTRACT

New pyrrolidinium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reactions between pyrrolidine and Brønsted acids, HX, where X is NO 3 (-), HSO 4 (-), HCOO (-), CH 3COO (-) or CF 3COO (-) and CH 3(CH 2) 6COO (-). The thermal properties, densities, electrochemical windows, temperature dependency of dynamic viscosity and ionic conductivity were measured for these PILs. All protonated pyrrolidinium salts studied here were liquid at room temperature and possess a high ionic conductivity (up to 56 mS cm (-1)) at room temperature. Pyrrolidinium based PILs have a relatively low cost, a low toxicity and exhibit a large electrochemical window as compared to other protic ionic liquids (up 3 V). Obtained results allow us to classify them according to a classical Walden diagram and to determinate their "Fragility". Pyrrolidinium based PILs are good or superionic liquids and shows extremely fragility. They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional inorganic acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...