Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 6896, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35478202

ABSTRACT

We study the transport properties on honeycomb networks motivated by graphene structures by using the continuous-time quantum walk (CTQW) model. For various relevant topologies we consider the average return probability and its long-time average as measures for the transport efficiency. These quantities are fully determined by the eigenvalues and the eigenvectors of the connectivity matrix of the network. For all networks derived from graphene structures we notice a nontrivial interplay between good spreading and localization effects. Flat graphene with similar number of hexagons along both directions shows a decrease in transport efficiency compared to more one-dimensional structures. This loss can be overcome by increasing the number of layers, thus creating a graphite network, but it gets less efficient when rolling up the sheets so that a nanotube structure is considered. We found peculiar results for honeycomb networks constructed from square graphene, i.e. the same number of hexagons along both directions of the graphene sheet. For these kind of networks we encounter significant differences between networks with an even or odd number of hexagons along one of the axes.

2.
Chaos ; 31(3): 033131, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33810752

ABSTRACT

In this work, an epidemiological model is constructed based on a target problem that consists of a chemical reaction on a lattice. We choose the generalized scale-free network to be the underlying lattice. Susceptible individuals become the targets of random walkers (infectious individuals) that are moving over the network. The time behavior of the susceptible individuals' survival is analyzed using parameters like the connectivity γ of the network and the minimum (Kmin) and maximum (Kmax) allowed degrees, which control the influence of social distancing and isolation or spatial restrictions. In all cases, we found power-law behaviors, whose exponents are strongly influenced by the parameter γ and to a lesser extent by Kmax and Kmin, in this order. The number of infected individuals diminished more efficiently by changing the parameter γ, which controls the topology of the scale-free networks. A similar efficiency is also reached by varying Kmax to extremely low values, i.e., the number of contacts of each individual is drastically diminished.


Subject(s)
Communicable Diseases , Communicable Diseases/epidemiology , Disease Susceptibility , Humans , Physical Distancing
3.
Phys Rev E ; 100(2-1): 022501, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574720

ABSTRACT

We study the relaxation dynamics of the polymer networks that are constructed based on a degree distribution specific to small-world networks. The employed building algorithm generates polymers with a large variety of architectures, thus allowing for a detailed study of the structural transition from a pure linear chain to dendritic polymer networks. This is done by varying a single parameter p, which measures the randomness in the degree of the network's nodes. The dynamics is investigated in the framework of the generalized Gaussian structures model by monitoring the influence of the parameter p and of the stiffness parameter q on the behavior of the relaxation quantities: averaged monomer displacement, storage modulus, and loss modulus. The structure properties of the constructed polymers are described by the mean-square radius of gyration. In the absence of stiffness, in the intermediate frequencies domain of the dynamical quantities we encounter different behaviours, such as a dendritic behavior followed by a linear one for very small values of p or a single well-marked dendritic behavior for higher values of p. The stiffness parameter q influences drastically the relaxation dynamics of these polymer networks and in general no evident scaling regions were encountered. However, for some values of the parameter set (p,q), such as (0.8,0.4), an extremely short constant slope region, less than one order of magnitude, was found.

4.
Sci Rep ; 8(1): 3731, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29487316

ABSTRACT

We focus on treelike generalized scale-free polymer networks, whose geometries depend on a parameter, γ, that controls their connectivity and on two modularity parameters: the minimum allowed degree, K min , and the maximum allowed degree, K max . We monitor the influence of these parameters on the static and dynamic properties of the achieved generalized scale-free polymer networks. The relaxation dynamics is studied in the framework of generalized Gaussian structures model by employing the Rouse-type approach. The dynamical quantities on which we focus are the average monomer displacement under external forces and the mechanical relaxation moduli (storage and loss modulus), while for the static and structure properties of these networks we concentrate on the eigenvalue spectrum, diameter, and degree correlations. Depending on the values of network's parameters we were able to switch between distinct hyperbranched structures: networks with more linearlike segments or with a predominant star or dendrimerlike topology. We have observed a stronger influence on K min than on K max . In the intermediate time (frequency) domain, all physical quantities obey power-laws for polymer networks with γ = 2.5 and K min = 2 and we prove additionally that for networks with γ ≥ 2.5 new regions with constant slope emerge by a proper choice of K min . Remarkably, we show that for certain values of the parameter set one may obtain self-similar networks.

5.
Polymers (Basel) ; 10(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-30966200

ABSTRACT

In this paper, we focus on the mechanical relaxation of a multilayer polymer network built by connecting identical layers that have, as underlying topologies, the dual Sierpinski gasket and the regular dendrimer. Additionally, we analyze the dynamics of dipolar energy transfer over a system of chromophores arranged in the form of a multilayer network. Both dynamical processes are studied in the framework of the generalized Gaussian structure (GSS) model. We develop a method whereby the whole eigenvalue spectrum of the connectivity matrix of the multilayer network can be determined iteratively, thereby rendering possible the analysis of the dynamics of networks consisting of a large number of layers. This fact allows us to study in detail the crossover from layer-like behavior to chain-like behavior. Remarkably, we highlight the existence of two bulk-like behaviors. The theoretical findings with respect to the decomposition of the intermediate domain of the relaxation quantities, as well as the chain-like behavior, are well supported by experimental results.

6.
Polymers (Basel) ; 10(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30960712

ABSTRACT

In this paper, we focus on the relaxation dynamics of a polymer network modeled by a fractal cactus. We perform our study in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. By performing real-space renormalization transformations, we determine analytically the whole eigenvalue spectrum of the connectivity matrix, thereby rendering possible the analysis of the Rouse-dynamics at very large generations of the structure. The evaluation of the structural and dynamical properties of the fractal network in the Rouse type-approach reveals that they obey scaling and the dynamics is governed by the value of spectral dimension. In the Zimm-type approach, the relaxation quantities show a strong dependence on the strength of the hydrodynamic interaction. For low and medium hydrodynamic interactions, the relaxation quantities do not obey power law behavior, while for slightly larger interactions they do. Under strong hydrodynamic interactions, the storage modulus does not follow power law behavior and the average displacement of the monomer is very low. Remarkably, the theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results from the literature.

7.
Polymers (Basel) ; 9(11)2017 Nov 04.
Article in English | MEDLINE | ID: mdl-30965880

ABSTRACT

We focus on macromolecules which are modeled as sequentially growing dual scale-free networks. The dual networks are built by replacing star-like units of the primal treelike scale-free networks through rings, which are then transformed in a small-world manner up to the complete graphs. In this respect, the parameter γ describing the degree distribution in the primal treelike scale-free networks regulates the size of the dual units. The transition towards the networks of complete graphs is controlled by the probability p of adding a link between non-neighboring nodes of the same initial ring. The relaxation dynamics of the polymer networks is studied in the framework of generalized Gaussian structures by using the full eigenvalue spectrum of the Laplacian matrix. The dynamical quantities on which we focus here are the averaged monomer displacement and the mechanical relaxation moduli. For several intermediate values of the parameters' set ( γ , p ) , we encounter for these dynamical properties regions of constant in-between slope.

8.
Phys Rev E ; 94(2-1): 022307, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627317

ABSTRACT

We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues of the connectivity matrix, which even for very large structures allows a complete analytical solution for this particular choice of network. In the case of MDs we observe an interplay between strong localization effects, due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is enhanced by interconnecting more layers of dendrimers.

9.
J Chem Phys ; 145(10): 104901, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27634273

ABSTRACT

We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

10.
Phys Rev E ; 93(2): 022304, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986349

ABSTRACT

We study the transport efficiency of excitations on complex quantum networks with loops. For this we consider sequentially growing networks with different topologies of the sequential subgraphs. This can lead either to a universal complete breakdown of transport for complete-graph-like sequential subgraphs or to optimal transport for ringlike sequential subgraphs. The transition to optimal transport can be triggered by systematically reducing the number of loops of complete-graph-like sequential subgraphs in a small-world procedure. These effects are explained on the basis of the spectral properties of the network's Hamiltonian. Our theoretical considerations are supported by numerical Monte Carlo simulations for complex quantum networks with a scale-free size distribution of sequential subgraphs and a small-world-type transition to optimal transport.


Subject(s)
Models, Theoretical , Quantum Theory
11.
J Chem Phys ; 145(21): 214901, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-28799361

ABSTRACT

In this paper, we focus on the relaxation dynamics of Sierpinski hexagon fractal polymer. The relaxation dynamics of this fractal polymer is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, by performing real-space renormalization transformations, we determine analytically the complete eigenvalue spectrum of the connectivity matrix. Based on the eigenvalues obtained through iterative algebraic relations we calculate the averaged monomer displacement and the mechanical relaxation moduli (storage modulus and loss modulus). The evaluation of the dynamical properties in the Rouse-type approach reveals that they obey scaling in the intermediate time/frequency domain. In the Zimm-type approach, which includes the hydrodynamic interactions, the relaxation quantities do not show scaling. The theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results.

12.
J Chem Phys ; 141(14): 144902, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25318736

ABSTRACT

Scale-free networks are structures, whose nodes have degree distributions that follow a power law. Here we focus on the dynamics of semiflexible scale-free polymer networks. The semiflexibility is modeled in the framework of [M. Dolgushev and A. Blumen, J. Chem. Phys. 131, 044905 (2009)], which allows for tree-like networks with arbitrary architectures to include local constrains on bond orientations. From the wealth of dynamical quantities we choose the mechanical relaxation moduli (the loss modulus) and the static behavior is studied by looking at the radius of gyration. First we study the influence of the network size and of the stiffness parameter on the dynamical quantities, keeping constant γ, a parameter that measures the connectivity of the scale-free network. Then we vary the parameter γ and we keep constant the size of the structures. This fact allows us to study in detail the crossover behavior from a simple linear semiflexible chain to a star-like structure. We show that the semiflexibility of the scale-free networks clearly manifests itself by displaying macroscopically distinguishable behaviors.

13.
J Chem Phys ; 127(13): 134904, 2007 Oct 07.
Article in English | MEDLINE | ID: mdl-17919051

ABSTRACT

Starting from exact relations for finite Husimi cacti we determine their complete spectra to very high accuracy. The Husimi cacti are dual structures to the dendrimers but, distinct from these, contain loops. Our solution makes use of a judicious analysis of the normal modes. Although close to those of dendrimers, the spectra of Husimi cacti differ. From the wealth of applications for measurable quantities which depend only on the spectra, we display for Husimi cacti the behavior of the fluorescence depolarization under quasiresonant Forster energy transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...