Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Rev Biol Trop ; 62(4): 1673-81, 2014 Dec.
Article in Spanish | MEDLINE | ID: mdl-25720196

ABSTRACT

Specific bacterial diversity in bats of different food guilds in Southern sierra Oaxaca, Mexico. Bats have different ecologic roles in variable ecosystems that have been already described. They have been linked to several zoonoses, however little is known about the relationship between bat microbiota and their diet, and studies on the bacterial ecology of the microbiota in bats are limited. To contribute with the description of this important interaction between microbiota and host, the aim of this work was to characterize the composition and bacterial diversity in the oral and anal regions of 10 species of bats, in relation to food guild. For this monthly samplings were conducted using four mist nets (19:00-24:00h) from February to October 2012; nets were reviewed every 45 minutes. Each captured organism was sampled in the oral and anal cavities with sterile swabs; these were placed in pre-enrichment media and stored at 4°C. Bacterial samples were studied which through selective media, chromogenic and biochemical tests. We obtained samples from 502 frugivorous, 29 hematophagous and 11 nectivorous bats. We found a total of 26 bacterial species, with the predominant phylum Proteobacteria and the family Enterobacteriaceae. Statistically significant differences were observed between oral and anal microhabitats: frugivorous (t = -3.516, g.1 = 14.761, p = 0.003), hematophagous (t = -3.320, g.l = 19.262, p = 0.003), and nectivorous (t = -2.497, g.l = 11.933, p = 0.026), and in some guilds [frugivorous and nectivorous in the anal region (t = 2.274, g.l = 29.660, p = 0.030), hematophagous and nectivorous anal region (t = 2.077, g.l = 29.904, p = 0.049)]. It was also shown that there is bacteria specificity in some guilds such as nectivorous and frugivorous with Bacillus cereus, B. sp. X. sp., as well as, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, S. epidermis, Aeromonas hydrophyla in hematophagous. Bacterial presence can be explained by the type of diet and/or by transfer of bacteria from their preys. These bacteria may be indigenous to these bats and play the role of mutual benefit, providing the host with stable growth conditions and supplemental nutrients, while the microbiota contributes to host nutrition, development of the immune system, stabilization of the microbial population and to avoid pathogens colonization. By understanding the importance of the relation- ship between host and its bacterial populations, the conservation efforts being made to protect species such as bats may be improved.


Subject(s)
Anal Canal/microbiology , Bacteria/classification , Biodiversity , Chiroptera/microbiology , Mouth/microbiology , Animals , Bacteria/isolation & purification , Chiroptera/classification , Chiroptera/physiology , Feeding Behavior , Mexico
2.
J Phys Chem B ; 109(47): 22674-84, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853952

ABSTRACT

The development of a methodology to predict the performance of a corrosion inhibitor (CI) using specific types of modeled and experimental surfaces and their subsequent estimation is presented. For previously reported imidazoline CIs, the theoretical partition coefficients and molecular volumes were calculated, providing a guide for molecular engineering of new imidazolines. The new CIs, N-[2-(2-alkyl-4,5-dihydroimidazol-1-yl)ethyl]alkylamides and N-[2-(2-alkyloylaminoethylamino)ethyl]alkylamides, were designed, prepared, and their theoretical partition coefficients and molecular volumes calculated. These indexes were correlated between tested and prototype CIs to select the best ones for the corrosion inhibition tests. The inhibition efficiencies were measured through potentiodynamic polarization curves (PPC), linear polarization resistance (LPR), and weight loss measurements (WLM) for SAE-1010 and SAE-1018 steels. The leading molecules were 1-(2-decylaminoethyl)-2-decylimidazoline and 1-(2-dodecylaminoethyl)-2-dodecylimidazoline with WLM efficiencies (steel 1010), of 62.8 and 78.9%, respectively. The efficiencies for the PPC/LPR tests (steel 1018) were 97 and 94%. To understand the mechanism of action of CIs, a simple model is suggested for the growth of self-assembled monolayers of CIs on a crystalline substrate. This model takes into account the amphiphilic nature of the inhibitor molecule on the adsorption process. Despite the simplicity of the model, the Monte Carlo simulations reproduce qualitatively many of the experimentally observed features involved in the formation of monolayers and provide a tentative explanation for the mechanism of corrosion inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL
...